Responsive image
博碩士論文 etd-0627114-233654 詳細資訊
Title page for etd-0627114-233654
論文名稱
Title
利用電子順磁光譜研究鈦酸鋇的本質缺陷和外來缺陷
A study of the intrinsic and extrinsic defects in BaTiO3 using electron paramagnetic resonance
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
55
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2014-06-20
繳交日期
Date of Submission
2014-07-27
關鍵字
Keywords
多層陶瓷電容、電子順磁共振、陶瓷、鈦酸鋇
BaTiO3, EPR, MLCC
統計
Statistics
本論文已被瀏覽 5726 次,被下載 0
The thesis/dissertation has been browsed 5726 times, has been downloaded 0 times.
中文摘要
將BaO-excess鈦酸鋇粉末添加3 mol.% CaTiO3和5.0 mol.% MgO,並在低氧分壓氣氛下燒結成試片1,2。將試片以電子順磁共振(electron paramagnetic resonance, EPR)分析,以研究其中的外來缺陷行為。而試片的組成成份類似EIA-X7R鎳卑金屬電極多層陶瓷電容(base-metal-electrode multilayer ceramic capacitors, BME-MLCC)。在g = 1.974 and g = 2.004所出現的兩條EPR光譜特徵線,代表分別表示鈦空缺與氧空缺形成的缺陷、鋇空缺與氧空缺形成的缺陷。
而g = 1.974 EPR譜線也出現在SrO-exess SrTiO3試片當中,這意謂EPR譜線所對應到的缺陷與鈦空缺有關。另外以陰極光射線系統( cathodoluminiscence, CL )分別在77 K和室溫所測得的CL譜線,由這兩組譜線更能佐證EPR譜線所對應的的缺陷種類。BaO-excess鈦酸鋇可藉由低氧氣氛燒結和添加施體以產生氧空缺,這是因為鈦空缺所造成的電荷補償所產生的。
Abstract
A commercial BaO-excess BaTiO3 powder added with 3.0 mol.% CaTiO3 and 5.0 mol% MgO and sintered under low pO2 is studied for the extrinsic defect behavior through electron paramagnetic resonance (EPR). The composition resembles a formulation for making EIA-X7R base-metal-electrode multilayer ceramic capacitors (BME-MLCC). Two characteristic EPR lines at g = 1.974 and g = 2.004 are assigned to Ti-vacancy and Ba-vacancy forming complex defects with O-vacancy, respectively. The EPR line at g = 1.974 also appears in SrO-exess SrTiO3 reinforces the claim that the corresponding paramagnetic sensitive defect is associated with Ti-vacancy. Both room-temperature and low-temperature (77 K) cathodoluminiscence (CL) spectra are obtained to support the defect species assigned to EPR lines. Extrinsic oxygen vacancies generated by low-pO2 and by the acceptor-doping level in the BaO-excess BaTiO3 composition when sintered at 1200oC and 1000oC are charge-compensated by cation vacancies, principally by Ti-vacancies.
目次 Table of Contents
論文摘要......................................................................................................................................................I
Abstract......................................................................................................................................................II
目錄............................................................................................................................................................III
表目錄........................................................................................................................................................V
圖目錄.......................................................................................................................................................VI
第一章 前言...............................................................................................................................................1
第二章 原理及文獻回顧........................................................................................................................3
2-1鈦酸鋇的基本性質.....................................................................................................................................3
2-2平衡相圖.................................................................................................................................................7
2-3鈦酸鋇相圖以及顯微結構...........................................................................................................12
2-4半導體陶瓷....................................................................................................................................12
2-5鈦酸鋇的缺陷化學................................................................................................13
2-5-1本質缺陷(Intrinsic Defects)
2-5-2 外來缺陷 (Extrinsic Defects)
2-6施體/受體元素對鈦酸鋇性質的影響.......................................................................................14
2-7添加物對鈦酸鋇的影響......................................................................................................................14
2-8燒結驅動力......................................................................................................................................................15
2-9關於鈦酸鋇的模型.....................................................................................................................................................................................................16
2-10電子順磁共振...............................................................................................................17
2-11MLCC...........................................................................................................................................................20
2-12MLCC劣化...............................................................................................................................................23

第三章 實驗步驟...................................................................................................................................25
3-1鈦酸鋇起始粉末.....................................................................................................................25
3-2試片製程.................................................................................................................................26
3-3導電度量測..............................................................................................................................29
3-4EPR量測...................................................................................................................................29
3-5CL試片前處理.......................................................................................................................30
第四章 實驗結果..................................................................................................................................32
4-1起始粉末.................................................................................................................................32
4-2未添加的試片........................................................................................................................34
4-3 CL光譜...................................................................................................................................35
4-4添加CaTiO3的試片...............................................................................................................37
4-5添加MgO的試片....................................................................................................................38
4-6共同添加CaTiO3、MgO的試片...........................................................................................39
第五章 討論...........................................................................................................................................40
5-1譜線意義.................................................................................................................................40
5-2因低氧分壓與非計量組成所造成的缺陷.......................................................................41
5-3 CaTiO3 and MgO共同添加................................................................................................43
5-4氧空位和缺陷中心的譜線..................................................................................................43
第六章 結論...........................................................................................................................................44
第七章 未來工作...................................................................................................................................45
參考文獻..................................................................................................................................................46
參考文獻 References
[1] Y. C. Wu, D. E. McCauley, M. S. H. Chu, and H. Y. Lu, “The {111} modulated Domains in t-BaTiO3,” J. Am. Ceram. Soc., 89 [9] 2702-09 (2006).
[2] H. Chazano, and K. Kishi, “dc-Electrical Degradation of the BT-Based Material for Multilayer Ceramic Capacitor with Ni Internal Electrode: Impedance Analysis and Microstructure,” Japan J. Appl. Phys., 40, part 1 [9B] 5624-29 (2001).
[3] G. Y. Yang, E. C. Dickey, C. A. Randall, D. E. Barber, P. Pinceloup, M. A. Handerson, R. A. Hill, J. J. Beeson, and D. J. Skamser, “Oxygen nonstoichiometry and dielectric evolution of BaTiO3. Part I – Improvement of insulation resistance with reoxidation,” J. Appl. Phys., 96 [12] 7492-7499 (2004).
[4] D. I. Woodward, I. M. Reaney, G. Y. Yang, E. C. Dickey, and C. A. Randall, “Vacancy Ordering in Reduced Barium Titanate,” Appl. Phys. Lett., 84 [23] 4650-52 (2003).
[5] H. W. Lee, and H. Y. Lu, “Intragranular Voids and dc Degradation in (CaO+MgO)-Codoped BaTiO3 Multilater Ceramic Capacitors,” J. Am. Ceram. Soc., 92 [12] 3037-43 (2009).
[6] H. D. Park, J. D. Nance, M. S. H. Chu, and Y. Avniel, “Multilayer Ceramic Chip Capacitors with High Reliability Compatible with Nickel Electrodes,” US Patent No.6,185,087, Feb. 6, 2001.
[7] H. W. Lee, and H. Y. Lu, “Intragranular Voids and dc Degradation in (CaO+MgO)-Codoped BaTiO3 Multilater Ceramic Capacitors,” J. Am. Ceram. Soc., 92 [12] 3037-43 (2009).
[8] G. V. Lewis, and C. R. A. Catlow, “Computer Modeling of Barium Titanate,” Radiat. Eff., 73 [1-4] 307-14 (1983).
[9] D. M. Smyth, “The Defect Chemistry of Donor-Doped BaTiO3: A Rebuttal,” J. Electroceram., 9 [3] 178-86 (2002).
[10] J. Daniels, K. H. Härdtl, and R. Wernicke, “The PTC Effect of Barium Titanate,” Philips Res. Rep., 38 [3] 78-82 (1978/1979).
[11] J. Daniels, and K. H. Härdtl, “Defect Chemistry and Electrical Conductivity of Doped Barium Titanate Ceramics: Part I. Electrical Conductivity at High Temperatures of Donor-Doped Barium Titanate,” Philips Res. Rep., 31 [6] 489-504 (1976).
[12] H. M. Chan, M. P. Harmer, and D. M. Smyth, “Compensating Defects in Highly Donor-Doped BaTiO3,” J. Am. Ceram. Soc., 96 [6] 507-10 (1986).
[13] N. H. Chan, and D. M. Smyth, “Defect Chemistry of Donor-Doped BaTiO3,” J. Am. Ceram. Soc., 67 [4] 285-88 (1984).
[14] A. Yamada, and Y. M. Chiang, “Nature of Cation Vacancies Formed to Compensate Donors duing Oxidation of Barium Titanate,” J. Am. Ceram. Soc., 78 [4] 909-14 (1995).
[15] Y. M. Chiang, and Takagi, “Grain Boundary Chemistry of BaTiO3 and SrTiO3: II, Origin of Electrical Barrier in Positive Temperature Coefficient Thermistors,” J. Am. Ceram. Soc., 73 [11] 3286-91 (1990).
[16] G. Koschek and E. Kubalek, “Micro-Scaled Spectral-Resolved Cathodoluminescence of Grains in Barium Titanate Ceramics,” phys. stat. sol. (a), 79 [1] 131-137 (1983).
[17] Y. H. Han, J. B. Appleby, and D. M. Smyth, “Calcium as an Acceptor Impurity in BaTiO3,” J. Am. Ceram. Soc., 70 [2] 96-100 (1987).
[18] C. J. Peng, and H. Y. Lu, “Compensating Effect in Semiconducting BaTiO3,” J. Am. Ceram. Soc., 71 [1] C-44-46 (1988).
[19] Jeong, and Y. H. Han, “Effect of MgO-Doping on the Electrical Properties and Microstructure of BaTiO3,” Jap. J. Appl. Phys., 43 [8A] 5373-77 (2004).
[20] D. M. Smyth, “Comments on the Defect Chemistry of Undoped and Acceptor-Doped BaTiO3,” J. Electroceram., 10 [1-2] 89-100 (2003).
[21] V. V. Laguta, A. M. Slipenyuk, I. P. Bykov, M. D. Glinchuk, M. Maglione, A. G. Bilous, O. I. V’yunov, J. Rosa, and L. Jastrabik, “Electron Spin Resonance Investigation of Impurity and Intrinsic Defects in Nb-Doped BaTiO3 Single Crystal and Ceramics,” J. Appl. Phys., 97, 073707-1-6 (2005).
[22] T. R. N. Kutty, P. Murugaraj, and N. S. Gajbhiye, “Activation of Trap Centers in PTC BaTiO3,” Mater. Lett., 2 [5A] 396-400 (1984).
[23] V. V. Laguta, A. M. Slipenyuk, I. P. Bykov, M .D. Glinchuk, M. Maglione, J. Rosa, and L. Jastrabik, “Electron Spin Resonance Investigation of Oxygen-Vacancy-Related Defects in BaTiO3 Thin Films,” Appl. Phys Lett., 87, 022903-1-3 (2005).
[24] R. Scharfschwerdt, A. Mazur, O.F. Schirmer, H. Hesse, and S. Mendricks, “Oxygen Vacancies in BaTiO3,” Phys. Rev. B, 54 [21] 15284-290 (1996).
[25] E. Possenreide, H. Kröse, T. Varnhorst, R. Scharfschwerdt, and O. F. Schirmer, “Shallow Acceptor and Electron Conduction States in BaTiO3,” Ferroelectrics, 151 [1] 199-204 (1994).
[26] S. Lenjer, O.F Schirmer, H. Hesse, and Th. W. Kool, “Conduction States in Oxide Perovskites: Three Manifestations of Ti3+ Jahn-Teller Polarons in Barium Titanate,” Phys. Rev. B, 66, 165106-1-12 (2002).
[27] M. D. Glinchuk, I. P Bykov, S. M. Kornienko, V. V. Laguta, A. M. Slipenyuk, O. I. V’yunov, and O. Z. Yanchevskii, “Influence of Impurities on the Properties of Rare-Earth-Doped Barium Titanate,” J. Mater. Chem., 10 [4] 941-47 (2000).
[28] T. Kolodiazhni, and A. Petric, “Analysis of Point Defects in Polycrystalline BaTiO3 by Electron Paramagnetic Resonance,” J. Phys. Chem. Solids, 64 [6] 953-60 (2003).
[29] T. Kolodiazhnyi, and A. Petric, “Effect of pO2 on Bulk and Grain Boundary Resistance of n-Type BaTiO3 at Cryogenic Temperatures,” J. Am. Ceram. Soc., 86 [9] 1554-59 (2003).
[30] T. D. Dunbar, W. I. Warren, B. A. Tuttle, C. A. Randall, and Y. Tsur, “Electron Paramagentic Resonance Investigations of Lanthanide-Doped Barium Titanate: Dopant Site Occupancy,” J. Phys. Chem. B, 108 [3] 908-17 (2004).
[31] S. Jida, and T. Miki, “Electron Paramagnetic Resonance of Nb-Doped BaTiO3 Ceramics with Positive Temperature Coefficient of Resistivity,” J. Appl. Phys., 80 [9] 5234-39 (1996).
[32] E. Erdem, P. Jakes, and R.A. Eichel, “Formation of Ti-VO Defect Dipoles in BaTiO3 Ceramics Heat-Treated under Reduced Oxygen Partial Pressure,” Func. Mater. Lett., 3 [1] 65-68 (2010).
[33] J. Dashdorj, M.E. Zvanut, and L. J. Stanley, “Iron-Related Defect Levels in SrTiO3 Measured by EPR Spectroscopy,” J. Appl. Phys., 107 [8] 083513-1-4 (2010).
[34] E. Possenreide, P. Jacobs, and O. F. Schirmer, “Paramagnetic Defects in BaTiO3 and Their Role in Light-Induced Charge Transport: I, ESR Studies,” J. Phys.: Condens. Matter, 4 [19] 4719-42 (1992).
[35] S. Ram, A. Jana, and T. K. Kunda, “Ferroelectric BaTiO3 Phase of Orthorhombic Crystal Structure Contained in Nanoparticles,” J. Appl. Phys., 102 [5] 054107-1-6 (2007).
[36] D. Kingery, H. K. Bowen, and D. R. Uhlmann, Dielectric Properties, pp.913-974 in Introduction to Ceramics, 2nd ED., J. Wiley, N. Y., 1976.
[37] B. Jaffee, W. R. Cook, and H. Jaffee, Peizoelectirc Ceramics, Academic Press, N. Y., 1971.
[38] D. E. Rase, and R. Roy, “Phase Equilibrium in the System BaO-TiO2,” J. Am. Ceram.Soc., 38 [3] 102-113 (1955).
[39] H. M. O'Bryan, Jr., and J. Thomson, “Phase Equilibria in the TiO2-Rich Region of the system BaO-TiO2,” J. Am. Ceram. Soc., 57 [12] 522-526 (1974).
[40] T. Negas, R. S. Roth, H. S. Parker, and D. Minor, “Subsolidus Phase Relations in the BaTiO3-TiO2 System,” J. Sol. Stst. Chem., 9, 297-307 (1974).
[41] J. A. E. Javadpour, “Raman Spectroscopy of Higher Titanate Phase in the Barium Titanate-Titanium Oxide System,” J. Am. Ceram. Soc., 71 [4] 206-213 (1988).
[42] J. J. Ritter, R. S. Roth, and J. E. Blendell, “Alkoxide Precursor Synthesis and Characterization of Phases in Barium-Titanium Oxide System ,” J. Am. Ceram. Soc., 69 2 155-162 (1986).
[43] K. W. Kirby, “Phase Relations in the Barium Titanate-Titanium Oxide System,” J. Am. Ceram. Soc., 74 [4] 206-213 (1991).
[44] S. Lee, and C. A. Randall, “Modified Phase Diagram for the Barium Dioxide System for the Ferroelectric Barium Titanate,”J. Am. Ceram. Soc., 90 [8] 2589-2595 (2007).
[45] R. K. Sharma, N. H. Chan and D. M. Smyth, “Solubility of TiO2 in BaTiO3”, J. Am. Ceram. Soc., 64 [8] 448 (1981).
[46] Y. H. Hu, M. P. Harmer and D. M. Smyth, “Solubility of BaO in BaTiO3”, J. Am. Ceram. Soc., 68 [7], 372 (1985).
[47] A. K. Maurice and R. C. Buchanan, “Preparation and Stoichiomertry Effects on Mictrostructure and Properties of High Purity BaTiO3”, Ferroelectrics, 74 61 (1987)
[48] O. Saburi, “Properties of Semiconductive Barium Titanates”, J. Phys. Soc. Jpn. 14 1159 (1959).
[49] S. Shirasaki, M. Tsukioka, H. Yamamura and H. Oshima, “Origin of semiconductng behavior in rare-earth-doped barium titanate”, Solid State Communication, 19 [8] 721 (1976).
[50] G. H. Jonker, “The Influence of Foreign Ions on The Crystal Lattice of Barium Titanate”, Mat. Res. Bull., 17 345 (1982).
[51] G. H. Jonker, “Some Aspects of Semiconducting Barium Titanate”, Solid State Electron, 7 895 (1964).
[52] T. Murakami, T. Miyashita, M. Nakahara and E. Erkind, “Effect of Rare-Earth Ions on Electrical Conductivity of BaTiO3 Ceramics”, J. Am. Ceram. Soc., [56] 6 294 (1973).
[53] K.S. Mazdiyasni, L.M. Brown, “Microstructure and Electrical Properties of Sc2O3-Doped, Rare-Earth-Oxide-Doped, and Undoped BaTiO3” J. Am. Ceram. Soc., [54] 11 539 (1971).
[54] L. A. Xue, Y. Chan and R. J. Brook, “The influence of ionic radii on the incorporation of trivalent dopants into BaTiO3”J. Mater. Sci., [1] 2 193 (1988).
[55] C. J. Ting, C. J. Peng, H. Y. Lu and S. T. Wu, “Lanthanum-Magnesium and Lanthanum-Manganese Donor-Acceptor-Codoped Semiconducting Barium Titanate”, J. Am. Ceram. Soc., [73] 2 329 (1990).
[56] S. B. Desu and D. A. Payne, “Interfacial Segregation in Perovskites: Ⅲ, Microstucture and Electrical Properties”, J. Am. Ceram. Soc., [73] 11 3407 (1990).
[57] S. B. Desu and E. C. Subbarao, Grain Boundary Phenomena in Electronic Ceramics, Edited by Lionel M. levinson, pp. 189~206 (1981).
[58] T. Fukami and H. Tsuchiya, “Dependence of Resistivity on Donor Dopant Content in Barium Titanate Ceramics”, Jpn. J. Appl. Phys., [18] 4 735 (1979).
[59] S. Shirasaki, H. Yamamura, H. Haneda, K. Kakegawa and J. Moori, “Defect structure and oxygen diffusion in undoped and La‐doped polycrystalline barium titanate” J. Chem. Phys., 73 4640 (1980).
[60] S. Shirasaki, H. Handea, K. Arai, and M Fujimoto, “Electrical property and defect structure of lanthanum-doped polycrystalline barium titanate” J. Mater. Sci.,[22] 12 4439 (1987).
[61] W. D. Kingery, H. K. Bown and D. R. Uhlmann (Eds.), Introduction to Ceramics, 2nd Ed., p.61, p. 461, p.489, p.498, p.900, John, Wiley&Sons, Singapore (1991).
[62] M. F. Yan, R. M. Cannon and H. K. Bowen, “Effect of grain size distribution on sintered density”,Mater. Sci. Eng.,[60] 3 275.
[63] K. R. Udayakumar, K. G. Brooks, J. A. T. Taylor and V. R. W. Amarakoon, “Effect of Liquid Phase on the PTCR Behavior of BaTiO3”, Ceram. Eng. Sci. Proc., 8 (9-10), 1035 (1987).
[64] N. Mukhwejee, R. D. Roseman and Q. Zhang, “Sintering behavior and PTCR properties of stoichiometric blend BaTiO3”, J. Phys. Chem. Solids., 63 631 (2002).
[65] P. Bomlai, N. Sirikulrat and T. Tunkasiri, “Effects of TiO2 and SiO2 Additions on Phase Formation, Microstructures and PTCR Characteristics of Sb-doped Barium Strontium Titanate Ceramics” J. Mat. Sci., 39 1831 (2004).
[66] D. F. K. Henning and B. S. Schreinemacher, “Temperature-Stable Dielectric Materials in the system BaTiO3-Nb2O5-Co3O4” J. Europ. Ceram. Soc., 14 463 (1994).
[67] W. Heywang, “Resistivity Anomaly in Doped Barium Titanate”, J. Am. Ceram. Soc., 47, 484 (1964).
[68] P. Gerthsen and B. Hoffmann, “Current-Voltage Characteristics and Capacitance of Single Grain Boundaries in Semiconducting BaTiO3 Ceramics”, Solid State Electronics, 16 617 (1973) .
[69] http://www.bio.fju.edu.tw/excel/content05/html/50b.htm
[70] W. H. Brown, and T. Poon, Introduction to Organic Chemistry, John Wiley and Sons Inc, N. J., 2005.
[71] http://www.tdk.com/pdf/mcannon_fopamt_apec_mar2011.pdf
[72] D. E. McCauley, “Design, Structure-Property Relationships and Implications of a BaTiO3 Based Dielectric Formulation for High Performance Capacitors, ” Doctoral
Structure-Property Relationships.
[73] Y. Taho, and V. O. Ronald, “Robust Design for a Multilayer Ceramic Capacitor
Screen-Printing Process Case Study, ” J. Eng. Design, 15 447-57 (2004).
[74] H. Kishi, Y. Mizuno, and H. Chazono, “Base-Metal Electrode-Multilayer Ceramic Capacitor:Past, Present and Future Perspectives, ” Jpn. J. Appl. Phys., 42 [1] 1-15 (2003).
[75] H. Chazono, and H. Kishi, “Sintering Characteristics in the BaTiO3-Nb2O5-Co3O4
Ternary System:II, Stability of So-called Core-Shell Structure, ” J. Am. Ceram. Soc., 83
[1] 101-106 (2000).
[76] H. Chazono, and H. Kishi, “dc-Electrical Degradation of the BT-Based Material for
Multilayer Ceramic Capacitor with Ni internal Electrode:Impedance Analysis and Microstructure, ” 40 [9B] 5624-5629 (2001).
[77] H. D. Park, J. D. Nance, M. S. H. Chu, and Y. Avniel, “Multilayer Ceramic Chip Capacitors with High Reliability Compatible with Nickel Electrodes”; US
Patent No. 6,185,087, Feburary 6, 2001.
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:自定論文開放時間 user define
開放時間 Available:
校內 Campus:永不公開 not available
校外 Off-campus:永不公開 not available

您的 IP(校外) 位址是 18.218.127.141
論文開放下載的時間是 校外不公開

Your IP address is 18.218.127.141
This thesis will be available to you on Indicate off-campus access is not available.

紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 永不公開 not available

QR Code