Responsive image
博碩士論文 etd-0627115-191421 詳細資訊
Title page for etd-0627115-191421
論文名稱
Title
以PDMS微透鏡覆於光纖末端製作Fabry-Pérot光纖干涉儀之感測應用
Fiber-optic Fabry-Pérot Interferometer Based on a PDMS Microlens on a Fiber Tip for Sensing Applications
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
81
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2015-06-26
繳交日期
Date of Submission
2015-07-28
關鍵字
Keywords
Fabry-Pérot光纖干涉儀、聚二甲基矽氧烷、光纖感測器
Fiber-optic Fabry-Pérot interferometer, PDMS, fiber sensor
統計
Statistics
本論文已被瀏覽 5675 次,被下載 880
The thesis/dissertation has been browsed 5675 times, has been downloaded 880 times.
中文摘要
Fabry-Pérot光纖干涉儀具有結構微小及靈敏度高的特性,因此被廣泛研究並應用在各種不同的領域之中,它是在光纖中製造出兩道反射面來產生兩道具有光程差的反射光而形成干涉。外在環境變化會使光程差受到影響,因此我們可以透過觀察Fabry-Pérot光纖干涉儀的干涉頻譜變化來進行感測。然而,傳統製作Fabry-Pérot光纖干涉儀的過程,牽涉到化學蝕刻、飛秒雷射或熔接不同種類的光纖,使得製作過程較為複雜且昂貴。本篇論文中,我們利用聚二甲基矽氧烷(Polydimethylsiloxane, PDMS)在光纖末端形成微透鏡結構以製作光纖Fabry-Pérot干涉儀,聚合物微透鏡可與光纖及空氣形成兩道反射面,進而形成Fabry-Pérot共振腔。由於PDMS固化後具有良好彈性及可回復性,僅需利用PDMS的表面張力便能於光纖末端形成微透鏡結構,因此製作過程相當簡單、重複性高且成本低。
我們利用此PDMS微透鏡Fabry-Pérot光纖干涉儀進行溫度、折射率、位移與傾斜角度的感測。在30°C~65°C的量測範圍內,我們所製作的元件展示了良好的穩定性及線性響應,其中曲率半徑為130μm的元件其溫度靈敏度可達631pm/°C。當外在環境折射率改變時,干涉頻譜的峰值強度會產生變化,其中曲率半徑為93μm之元件在折射率1.333~1.3997範圍間的靈敏度為-59.61dB/RIU。在位移感測範圍為0~3μm時,曲率半徑103μm之元件的靈敏度可達-50.98nm/μm,表現優於其他文獻所提出之位移感測器。而在傾斜角度感測時,隨著傾斜角度增加,干涉頻譜的消光比會減少,並且在0°~5°的量測範圍內,會有部分區域呈現線性變化的趨勢。此外,利用PDMS所製作的元件於實驗前後外觀並無明顯變化,也說明了PDMS確實具有良好的回復性。
Abstract
Fiber-optic Fabry-Pérot interferometers (FFPIs) have been widely utilized in many areas due to their advantages of compact size and high sensitivity. FFPIs have two reflective interfaces. As light propagates to the two interfaces, we can get two reflective light beams with different optical paths to form the interference spectrum. The optical path difference will be influenced by the surrounding environment. As a result, we can use the FFPIs for sensing applications. In previous studies, the FFPIs are fabricated by etching, femtosecond lasers or splicing different types of fibers. However, those fabrication processes are complicated or expensive. In this thesis, we fabricate a FFPI which is based on a Polydimethylsiloxane (PDMS) microlens on a fiber tip. It has simple and low-cost fabrication process. The PDMS microlens can function as the Fabry-Pérot cavity which is flexible and recoverable.
We use the PDMS-microlens-based FFPI for sensing applications of temperature, refractive index, displacement, and tilt angle. The temperature sensitivity of the FFPI with the radius of curvature R = 130μm is 631pm/°C between 30°C~65°C. When we vary the surrounding refractive index, the intensity of interference peak will be changed. The refractive index sensitivity of the FFPI with R = 93μm is -59.61dB/RIU in the refractive index range of 1.333~1.3997. The sensitivity of displacement is -50.98nm/μm for the FFPI with R = 103μm, which is better than other displacement sensors. In the tilt angle measurement, when the tilt angle is increased, the extinction ratio is decreased. We have also found that the FFPI with smaller R has a larger critical angle. In addition, the appearances of the PDMS microlens have no change after measurement, which demonstrates that the PDMS microlens has the good recoverable property.
目次 Table of Contents
論文審定書 i
誌謝 ii
中文摘要 iii
Abstract iv
目錄 vi
表目錄 viii
圖目錄 ix
第一章 緒論 1
1-1 光纖感測器 1
1-2 光纖干涉儀 3
1-3 研究動機 12
第二章 Fabry-Pérot光纖干涉儀原理 13
2-1 Fabry-Pérot干涉儀 13
2-2 Fabry-Pérot光纖干涉儀 21
第三章 PDMS微透鏡Fabry-Pérot光纖干涉儀 25
3-1 聚合物微透鏡Fabry-Pérot光纖干涉儀結構 25
3-2 PDMS材料特性 27
3-3 PDMS微透鏡Fabry-Pérot光纖干涉儀製作方式 29
第四章 PDMS微透鏡Fabry-Pérot光纖干涉儀基本特性 34
4-1 實驗架設 34
4-2 量測結果與討論 36
第五章 PDMS微透鏡Fabry-Pérot光纖干涉儀感測應用 41
5-1 溫度感測 41
5-2 折射率感測 46
5-3 位移感測 51
5-4 傾斜角度感測 56
第六章 結論 62
參考文獻 63
參考文獻 References
[1] K. C. Kao and G. A. Hockham, “Dielectric-fibre surface waveguides for optical frequencies,” Proc. IEE, vol. 113, pp. 1151-1158, 1966.
[2] B. Dong, D.-P. Zhou, L. Wei, W.-K. Liu, and J. W. Y. Lit, “Temperature- and phase-independent lateral force sensor based on a core-offset multi-mode fiber interferometer,” Opt. Express, vol. 16, pp. 19291-19296, 2008.
[3] M. J. Renn, D. Montgomery, O. Vdovin, D. Z. Anderson, C. E. Wieman, and E. A. Cornell, “Laser-guided atoms in hollow-core optical fibers,” Phys. Rev. Lett., vol. 75, pp. 3253-3256, 1995.
[4] F. Benabid, J. C. Knight, G. Antonopoulos, and P. S. J. Russell, “Stimulated raman scattering in Hydrogen-filled hollow-core photonic crystal fiber,” Science, vol. 298, pp. 399-402, 2002.
[5] J. Wang, B. Dong, E. Lally, J. Gong, M. Han, and A. Wang, “Multiplexed high temperature sensing with sapphire fiber air gap-based extrinsic Fabry-Pérot interferometers,” Opt. Lett., vol. 35, pp. 619-621, 2012.
[6] D. Wu, W. Huang, G.-Y. Wang, J.-Y. Fu, and Y.-Y. Chen, “In-line fiber Fabry-Pérot refractive index tip sensor based on photonic crystal fiber and spectrum differential integration method,” Opt. Commun., vol. 313, pp. 270-275, 2014.
[7] Y. H. Kim, M. J. Kim, B. S. Rho, M.-S. Park, J.-H. Jang, and B. H. Lee, “Ultra sensitive fiber-optic Hydrogen sensor based on high order cladding mode,” IEEE Sens. J., vol. 11, pp. 1423-1426, 2011.
[8] R. Slavik, J. Homola, and J. Ctyroky, “Single-mode optical fiber surface plasmon resonance sensor,” Sens. Actuators B Chem., vol. 54, pp. 74-79, 1999.
[9] V. Lanticq, M. Quiertant, E. Merlio, and S. Delepine-Lesoille, “Brillouin sensing cable: Design and experimental validation,” IEEE Sens. J., vol. 8, pp. 1194-1201, 2008.
[10] A. R. Bahrampour, S. Tofighi, M. Bathaee, and F. Farman, Interferometry - Research and Applications in Science and Technology. InTech, 2012.
[11] T. Zhu, D. Wu, M. Liu, and D.-W. Duan, “In-line fiber optic interferometric sensors in single-mode fibers,” Sens., vol. 12, pp. 10430-10449, 2012.
[12] E. Hecht, Optics, 4th ed., Addison-Wesley, New York, 2001.
[13] Z. Tian, G. Student, S. S.-H. Yam, and H.-P. Loock, “Single-mode fiber refractive index sensor based on core-offset attenuators,” IEEE Photonics Technol. Lett., vol. 20, pp. 1387-1389, 2008.
[14] T. Li, X. Dong, C. C. Chan, K. Ni, S. Zhang, and P. P. Shum, “Humidity sensor with a PVA-coated photonic crystal fiber interferometer,” IEEE Sens. J., vol. 13, pp. 2214-2216, 2013.
[15] J.-F. Ding, A. P. Zhang, L.-Y. Shao, J.-H. Yan, and S. He, “Fiber-taper seeded long-period grating pair as a highly sensitive refractive-index sensor,” IEEE Photonics Technol. Lett., vol. 17, pp. 1247-1249, 2005.
[16] J. Chen, J. Zhou, and X. Yuan, “M-Z interferometer constructed by two S-bend fibers for displacement and force measurements,” IEEE Photonics Technol. Lett., vol. 26, pp. 837-840, 2014.
[17] M. Shao, X. Qiao, H. Fu, H. Li, J. Zhao, and Y. Li, “A Mach-Zehnder interferometric humidity sensor based on waist-enlarged tapers,” Opt. Lasers Eng., vol. 52, pp. 86-90, 2014.
[18] K. Karim Qureshi, Z. Liu, H.-Y. Tam, and M. Fahad Zia, “A strain sensor based on in-line fiber Mach-Zehnder interferometer in twin-core photonic crystal fiber,” Opt. Commun., vol. 309, pp. 68-70, 2013.
[19] Y. Geng, X. Li, X. Tan, Y. Deng, and Y. Yu, “High-sensitivity Mach-Zehnder interferometric temperature fiber sensor based on a waist-enlarged fusion bitaper,” IEEE Sens. J., vol. 11, pp. 2891-2894, 2011.
[20] M. Deng, C.-P. Tang, T. Zhu, and Y.-J. Rao, “Highly sensitive bend sensor based on Mach-Zehnder interferometer using photonic crystal fiber,” Opt. Commun., vol. 284, pp. 2849-2853, 2011.
[21] J. Zhou, Y. Wang, C. Liao, B. Sun, J. He, G. Yin, S. Liu, Z. Li, G. Wang, X. Zhong, and J. Zhao, “Intensity modulated refractive index sensor based on optical fiber Michelson interferometer,” Sens. Actuators B Chem., vol. 208, pp. 315-319, 2015.
[22] Z. Tian, S. S.-H. Yam, and H.-P. Loock, “Refractive index sensor based on an abrupt taper Michelson interferometer in a single-mode fiber,” Opt. Lett., vol. 33, pp. 1105-1107, 2008.
[23] P. Hu, X. Dong, K. Ni, L. H. Chen, W. C. Wong, and C. C. Chan, “Sensitivity-enhanced Michelson interferometric humidity sensor with waist-enlarged fiber bitaper,” Sens. Actuators B Chem., vol. 194, pp. 180-184, 2014.
[24] Z. Li, Y. Wang, C. Liao, S. Liu, J. Zhou, X. Zhong, Y. Liu, K. Yang, Q. Wang, and G. Yin, “Temperature-insensitive refractive index sensor based on in-fiber Michelson interferometer,” Sens. Actuators B Chem., vol. 199, pp. 31-35, 2014.
[25] G. Sun, H. Tang, Y. Hu, and Y. Zhou, “Strain and temperature discrimination using high birefringence fiber Sagnac interferometer with enhanced sensitivities,” IEEE Photonics Technol. Lett., vol. 24, pp. 587-589, 2012.
[26] P. Zu, C. C. Chan, Y. Jin, Y. Zhang, and X. Dong, “Fabrication of a temperature-insensitive transverse mechanical load sensor by using a photonic crystal fiber-based Sagnac loop,” Meas. Sci. Technol., vol. 22, p. 025204, 2011.
[27] M. Bravo, A. M. R. Pinto, M. Lopez-Amo, J. Kobelke, and K. Schuster, “High precision micro-displacement fiber sensor through a suspended-core Sagnac interferometer,” Opt. Lett., vol. 37, pp. 202-204, 2012.
[28] G. Z. Xiao, A. Adnet, Z. Zhang, F. G. Sun, and C. P. Grover, “Monitoring changes in the refractive index of gases by means of a fiber optic Fabry-Pérot interferometer sensor,” Sens. Actuators A Phys., vol. 118, pp. 177-182, 2005.
[29] M. Jiang and E. Gerhard, “A simple strain sensor using a thin film as a low-finesse fiber-optic Fabry-Pérot interferometer,” Sens. Actuators A Phys., vol. 88, pp. 41-46, 2001.
[30] F. Xu, D. Ren, X. Shi, C. Li, W. Lu, L. Lu, L. Lu, and B. Yu, “High-sensitivity Fabry-Pérot interferometric pressure sensor based on a nanothick silver diaphragm,” Opt. Lett., vol. 37, pp. 133-135, 2012.
[31] Y.-J. Rao, M. Deng, D.-W. Duan, X.-C. Yang, T. Zhu, and G.-H. Cheng, “MicroFabry-Pérot interferometers in silica fibers machined by femtosecond laser,” Opt. Express, vol. 15, pp. 14123-14128, 2007.
[32] T. Wei, Y. Han, Y. Li, H.-L. Tsa, and H. Xiao, “Temperature-insensitive miniaturized fiber inline Fabry-Pérot interferometer for highly sensitive refractive index measurement,” Opt. Express, vol. 16, pp. 5764-5769, 2008.
[33] T. We, Y. Han, H.-L. Tsa, and H. Xiao, “Miniaturized fiber inline Fabry-Pérot interferometer fabricated with a femtosecond laser,” Opt. Lett., vol. 33, pp. 536-538, 2008.
[34] J. Tian, Y. Lu, Q. Zhang, and M. Han, “Microfluidic refractive index sensor based on an all-silica in-line Fabry-Pérot interferometer fabricated with microstructured fibers,” Opt. Express, vol. 21, pp. 6633-6639, 2013.
[35] M.-S. Jiang, Q.-M. Sui, Z.-W. Jin, F.-Y. Zhang, and L. Jia, “Temperature-independent optical fiber Fabry-Pérot refractive-index sensor based on hollow-core photonic crystal fiber,” Optik, vol. 125, pp. 3295-3298, 2014.
[36] Y. Gong, Y. Guo, Y.-J. Rao, T. Zhao, and Y. Wu, “Fiber-optic Fabry-Pérot sensor based on periodic focusing effect of graded-index multimode fibers,” IEEE Photonics Technol. Lett., vol. 22, pp. 1708-1710, 2010.
[37] P. A. R. Tafulo, P. A. S. Jorge, J. L. Santos, F. M. Araújo, and O. Frazão, “Intrinsic Fabry-Pérot cavity sensor based on etched multimode graded index fiber for strain and temperature measurement,” IEEE Sens. J., vol. 12, pp. 8-12, 2012.
[38] C.-C. Liu, Y.-W. You, L.-G. Sheu, J.-M. Hsu, and C.-L. Lee, “Phenomenon of hygroscopicity in a fiber Fabry-Pérot interferometer with an absorbent polymer cavity,” presented at the Lasers and Electro-Optics Pacific Rim, Kyoto, 2013.
[39] C.-L. Lee, L.-H. Lee, H.-E. Hwang, and J.-M. Hsu, “Highly sensitive air-gap fiber Fabry-Pérot interferometers based on polymer-filled hollow core fibers,” IEEE Photonics Technol. Lett., vol. 24, pp. 149-151, 2012.
[40] L. H. Chen, T. Li, C. C. Chan, R. Menon, P. Balamurali, M. Shaillender, B. Neu, X. M. Ang, P. Zu, W. C. Wong, and K. C. Leong, “Chitosan based fiber-optic Fabry-Pérot humidity sensor,” Sens. Actuators B Chem., vol. 169, pp. 167-172, 2012.
[41] Y. Zhao, R.-Q. Lv, D. Wang, and Q. Wang, “Fiber optic Fabry-Pérot magnetic field sensor with temperature compensation using a fiber Bragg grating,” IEEE Trans. Instrum. Meas., vol. 63, pp. 2210-2214, 2014.
[42] Y. Zhao, R.-Q. Lv, Y. Ying, and Q. Wang, “Hollow-core photonic crystal fiber Fabry-Pérot sensor for magnetic field measurement based on magnetic fluid,” Opt. Laser Technol., vol. 44, pp. 899-902, 2012.
[43] J. Goicoechea, C. R. Zamarreño, I. R. Matias, and F. J. Arregui, “Utilization of white light interferometry in pH sensing applications by mean of the fabrication of nanostructured cavities,” Sens. Actuators B Chem., vol. 138, pp. 613-618, 2009.
[44] K.-R. Kim, S. Chang, and K. Oh, “Refractive microlens on fiber using UV-curable fluorinated acrylate polymer by surface-tension,” IEEE Photonics Technol. Lett., vol. 15, pp. 1100-1102, 2003.
[45] J. F. Mulligan, “Who were Fabry and Pérot?,” Am. J. Phys., vol. 66, pp. 797-802, 1998.
[46] F. A. Jenkins and H. E. White, Fundamentals of Optics, 3rd ed., McGraw-Hill Science/Engineering/Math, New York, 1957.
[47] Z. L. Ran, Y. J. Rao, W. J. Liu, X. Liao, and K. S. Chiang, “Laser-micromachined Fabry-Pérot optical fiber tip sensor for high-resolution temperature-independent measurement of refractive index,” Opt. Express, vol. 16, pp. 2252-2263, 2008.
[48] S.-Y. Lee, H.-W. Tung, W.-C. Chen, and W. Fang, “Thermal actuated solid tunable lens,” IEEE Photonics Technol. Lett., vol. 18, pp. 2191-2193, 2006.
[49] I. Klammer, A. Buchenauer, H. Fassbender, R. Schlierf, G. Dura, W. Mokwa, and U. Schnakenberg, “Numerical analysis and characterization of bionic valves for microfluidic PDMS-based systems,” J. Micromech. Microeng., vol. 17, pp. S122-S127, 2007.
[50] T. W. Odom, V. R. Thalladi, J. C. Love, and G. M. Whitesides, “Generation of 30-50 nm structures using easily fabricated, composite PDMS masks,” J. Am. Chem. Soc., vol. 124, pp. 12112-12113, 2002.
[51] W. Qiu, “PDMS based waveguides for microfluidics and EOCB,” Master, The Department of Mechanical Engineering, Louisiana State University, 2012.
[52] X. Zou, N. Wu, Y. Tian, J. Ouyang, K. Barringhaus, and X. Wang, “Miniature Fabry-Pérot fiber optic sensor for intravascular blood temperature measurements,” IEEE Sens. J., vol. 13, pp. 2155-2160, 2013.
[53] B.-B. Li, Q.-Y. Wang, Y.-F. Xiao, X.-F. Jiang, Y. Li, L. Xiao, and Q. Gong, “On chip, high-sensitivity thermal sensor based on high-Q polydimethylsiloxane-coated microresonator,” Appl. Phys. Lett., vol. 96, p. 251109, 2010.
[54] L. Haimei, L. Xinwan, Z. Weiwen, L. Xing, H. Zehua, and C. Jianping, “Temperature-insensitive microdisplacement sensor based on locally bent microfiber taper modal interferometer,” IEEE Photonics J., vol. 4, pp. 772-778, 2012.
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:自定論文開放時間 user define
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus: 已公開 available


紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code