Responsive image
博碩士論文 etd-0627116-171651 詳細資訊
Title page for etd-0627116-171651
論文名稱
Title
漣波電流導向之太陽能電池板等效電路模型參數推導
Parameter Derivation of Equivalent Circuit Model for Photovoltaic Panel with Ripple Current Orientation Method
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
67
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2016-07-20
繳交日期
Date of Submission
2016-07-27
關鍵字
Keywords
最大功率追蹤、漣波電流導向、等效電路模型、太陽能電池板、參數推導
Parameter derivation, Equivalent circuit model, Photovoltaic panel (PV), Maximum power point tracking (MPPT), Ripple current orientation
統計
Statistics
本論文已被瀏覽 5660 次,被下載 62
The thesis/dissertation has been browsed 5660 times, has been downloaded 62 times.
中文摘要
太陽能電池板等效電路模型加入寄生電容可解釋輸出電壓、電流間相位偏移的現象,並可用以模擬太陽能電池板操作時之動態特性。本文提出等效電路模型參數推導方法,利用太陽能電池板連接升壓轉換器,抽取漣波電流,於執行最大功率追蹤時,藉由取得五個操作點數據,簡易地推導參數。其中,開路電壓、最大功率、短路電流三個操作點用來推導靜態等效電路模型參數。至於太陽能電池板寄生電容方程式,則在太陽能電池板輸出電壓低於等效電路模型中二極體之臨界電壓時,任意選取兩操作點推導其變化。當照度發生變化,等效電路模型可依變化前後的短路電流比例調整參數。實驗結果顯示,以此方法推導出之等效電路模型模擬太陽能電池板操作,不論於靜態、輸出含有漣波電流之V-I特性及操作時產生之暫態變化,皆與太陽能電池板實際輸出情況相符。
Abstract
For a photovoltaic (PV) panel, an equivalent circuit with an additional parasitic capacitance on the conventionally used single-diode static model can be used to interpret the phase deviation between the output voltage and current and to simulate the dynamic characteristics. The parameters of the equivalent circuit can be derived simply from five test points when a boost converter is attached to the PV panel for maximum power point tracking (MPPT) drawing a rippled current. The circuit parameters of the static model are calculated from the open-circuit voltage, the maximum power, and the short-circuit current, which can be rapidly obtained by operating the boost converter at a designated ripple current. An equation to account for the variation of the parasitic capacitance can be derived from two arbitrary operation points with voltages less than the diode threshold voltage of the PV panel. The circuit parameters for different irradiations can be obtained from the ratio of the short circuit current to the pre-known short-circuit current. Experimental results have confirmed that fitness of the equivalent circuit model with parameter identification and demonstrated that it can be used for simulating the transient behaviors of a PV panel with a rippled current.
目次 Table of Contents
目錄
摘要 i
Abstract ii
目錄 iii
圖目錄 v
表目錄 viii
第一章 緒論 1
1-1 研究背景與動機 1
1-2 論文大綱 3
第二章 太陽能電池板概述 4
2-1 太陽能電池板基本架構 4
2-2 太陽能電池板特性簡介 6
2-3 太陽能電池板系統 10
2-4 漣波電流對太陽能電池板之影響 11
第三章 太陽能電池板等效電路模型 15
3-1 靜態等效電路模型 15
3-2 含寄生電容之等效電路模型 17
3-3 等效電路模型在不同照度下之參數變化 22
第四章 太陽能電池板等效電路模型參數推導實例 25
4-1 實驗系統 25
4-2 等效電路模型參數推導流程 31
4-3 等效電路模型參數推導實驗 33
4-4 曲線模擬與實際量測 35
4-5 暫態模擬與實際量測 45
第五章 結論與未來研究方向 51
5-1 結論 51
5-2 未來研究方向 52
參考文獻
參考文獻 References
[1] S. Rahman, “Green Power: What Is It and Where Can We Find It?” IEEE Power Energy Mag., vol. 1, no. 1, pp. 30-37, Feb. 2003.
[2] D. Flin and R. Pool, “Great Creations [Alternative Energy],” IEEE Power Engineer, vol. 19, no. 5, pp. 4-17, Oct./Nov. 2005.
[3] B. Cancino, E. Galvez, P. Roth, and A. Bonneschky, “Introducing Photovoltaic Systems into Homes in Rural Chile,” IEEE Technology and Society Mag., vol. 20, no.1, pp. 29-36, Jan. 2001.
[4] M. Rabinowitz, “Power Systems of the Future. I,” IEEE Power Engineering Review, vol. 20, no.1, pp. 5-16, Aug. 2000.
[5] F. Blaabjerg, Y. Yang, and K. Ma, “Power Electronics - Key Technology for Renewable Energy Systems - Status and Future,” in IEEE Electric Power and Energy Conversion Systems Conference, pp. 1-6, Oct. 2013.
[6] S. V. Dhople, A. Davoudi, G. Nilles, and P. L. Chapman, “Maximum Power Point Tracking Feasibility in Photovoltaic Energy Conversion Systems,” in IEEE Applied Power Electronics Conference and Exposition, pp. 2294-2299, Feb. 2010.
[7] T. Y. Kim, H. G. Ahn, S. K. Park, and Y. K. Lee, “A Novel Maximum Power Point Tracking Control for Photovoltaic Power System under Rapidly Changing Solar Radiation,” in IEEE International Symposium on Industrial Electronics, vol. 2, pp. 1011-1014, June 2001.
[8] K. Kobayashi, H. Matsuo, and Y. Sekine, “Novel Solar-Cell Power Supply System Using the Multiple-Input DC-DC Converter,” in IEEE Telecommunications Energy Conference, pp. 797-802, Oct. 1998.
[9] E. Romero-Cadaval, “Grid-Connected Photovoltaic Generation Plants: Components and Operation,” IEEE Industrial Electronics Mag., vol. 7, pp. 6-20, Sep. 2013.
[10] H. Patel and V. Agarwal, “MATLAB-Based Modeling to Study the Effects of Partial Shading on PV Array Characteristics,” in IEEE Transactions on Energy Conversion, vol.23, no.1, pp. 302-310, Mar. 2008.
[11] A. Chatterjee, A. Keyhani, and D. Kapoor, “Identification of Photovoltaic Source Models,” IEEE Transactions on Energy Conversion, vol.26, no.3, pp. 883-889, Sep. 2011.
[12] V. V. R. Scarpa, S. Buso, and G. Spiazzi, “Low-Complexity MPPT Technique Exploiting the PV Module MPP Locus Characterization,” IEEE Transactions on Industrial Electronics, vol.56, no.5, pp. 1531-1538, May 2009.
[13] F. Abdulal, N. Anani, and N. Bowring, “Comparative Modelling and Parameter Extraction of a Single-Diode and Two-Diode Model of a Solar Cell,” International Symposium on Communication Systems, Networks & Digital Signal Processing, pp. 856-860, July 2014.
[14] A. N. Belhaouas, M. S. Ait Cheikh, and C. Larbes, “Suitable Matlab-Simulink Simulator for PV System Based on a Two-Diode Model under Shading Conditions,” International Conference on Systems and Control, pp. 72-76, Oct. 2013.
[15] B. C. Babu and S. Gurjar, “A Novel Simplified Two-Diode Model of Photovoltaic (PV) Module,” IEEE Journal of Photovoltaics, vol.4, no.4, pp. 1156-1161, July 2014.
[16] Z. Salam, K. Ishaque, and H. Taheri, “An Improved Two-Diode Photovoltaic (PV) Model for PV System,” Joint International Conference on Power Electronics, Drives and Energy Systems (PEDES) & Power India, pp. 1-5, Dec. 2010.
[17] J. M. Ma, T. T. Guo, and S. H. Lun, “An New Explicit I-V Model Based on Chebyshev Polynomials for Two-Diode Model of Photovoltaic Modules,” IEEE International Conference on Service Operations and Logistics, and Informatics, pp. 362-367, Oct. 2014.
[18] M. Hejri, H. Mokhtari, M. R. Azizian, M. Ghandhari, and L. Soder, “On the Parameter Extraction of a Five-Parameter Double-Diode Model of Photovoltaic Cells and Modules,” IEEE Journal of Photovoltaics, vol.4, no.3, pp. 915-923, May 2014.
[19] N. M. Abd Alrahim Shannan, N. Z. Yahaya, and B. Singh, “Single-Diode Model and Two-Diode Model of PV Modules: A Comparison,” IEEE International Conference on Control System, Computing and Engineering, pp. 210-214, Dec. 2013.
[20] S. Pranith and T. S. Bhatti, “Modeling and parameter extraction methods of PV modules — Review,” International Conference on Recent Developments in Control, Automation and Power Engineering, pp. 72-76, March 2015.
[21] M. Sheraz and M. A. Abido, “An efficient approach for parameter estimation of PV model using DE and fuzzy based MPPT controller,” IEEE Conference on Evolving and Adaptive Intelligent Systems, pp. 1-5, June 2014.
[22] Jing Jun Soon And Kay-Soon Low, “Photovoltaic Model Identification Using Particle Swarm Optimization With Inverse Barrier Constraint,” IEEE Transactions On Power Electronics, Vol. 27, No. 9, pp. 3975-3983, Sep. 2012.
[23] C. Saravanan, M. A. Panneerselvam, “A Comprehensive Analysis for Extracting Single Diode PV Model Parameters by Hybrid GA-PSO Algorithm,” International Journal of Computer Applications, Vol. 78, No.8, pp. 16-19, Sep. 2013.
[24] Y. Mahmoud and E. F. El-Saadany, “A Photovoltaic Model With Reduced Computational Time, ” in IEEE Transactions on Industrial Electronics, vol. 62, no. 6, pp. 3534-3544, June 2015.
[25] 經濟部能源局,http://www.moeaboe.gov.tw。
[26] 翁敏航,太陽能電池-原理、元件、製程與檢測技術,東華書局,台北市,中華民國99年。
[27] 吳財福、張健軒、陳裕愷,太陽能供電與照明系統概論,全華科技圖書,台北市,中華民國92年。
[28] S. C. W. Krauter, Solar Electric Power Generation-Photovoltaic Energy Systems, Springer-Verlag Berlin Heidelberg, 2006.
[29] E. Koutroulis and F. Blaabjerg, “Methodology for the Optimal Design of Transformerless Grid-Connected PV Inverters,” IET Power Electronics, vol. 5, pp. 1491-1499, Sep. 2012
[30] L. N. Khanh, J. J. Seo, Y. S. Kim, and D. J. Won, “Power-Management Strategies for a Grid-Connected PV-FC Hybrid System,” IEEE Transactions on Power Delivery, vol. 25, no. 3, pp. 1874-1882, July 2010.
[31] F. Nejabatkhah, S. Danyali, S. H. Hosseini, M. Sabahi, and S. M. Niapour, “Modeling and Control of a New Three-Input DC–DC Boost Converter for Hybrid PV/FC/Battery Power System,” IEEE Transactions on Power Electronics, vol. 27, no. 5, pp. 2309-2324, May 2012.
[32] J. A. Gow and C. D. Manning, “Controller Arrangement for Boost Converter Systems Sourced from Solar Photovoltaic Arrays or Other Maximum Power Sources,” IEE Proceedings - Electric Power Applications, vol. 147, no. 1, pp. 15-20, Jan. 2000.
[33] H. Matsuo and F. Kurokawa, “New Solar Cell Power Supply System Using a Boost Type Bidirectinal DC-DC Converter,” IEEE Transactions on Industrial Electronics, vol. 31, no. 1, pp. 51-55, Feb. 1984.
[34] Y. Du and D. D. C. Lu, “Analysis of a Battery-Integrated Boost Converter for Module-Based Series Connected Photovoltaic System,” in International Power Electronics Conference, pp. 694-698, Jun. 2010.
[35] S. L. Lin, G. B. Wu, W. C. Liu, and C. S. Moo, “Ripple Current Effect on Output Power of Solar-Cell Panel,” in Proceedings International Conference on Renewable Energy Research and Applications, ICRERA, pp. 1-5, Nov. 2012.
[36] T. Esram, J. W. Kimball, P. T. Krein, P. L. Chapman, and P. Midya, “Dynamic Maximum Power Point Tracking of Photovoltaic Arrays Using Ripple Correlation Control,” IEEE Transactions on Power Electronics, vol. 21, pp. 1282-1291, Sep.2006.
[37] J. W. Kimball and P. T. Krein, “Digital Ripple Correlation Control for Photovoltaic Applications,” in IEEE Power Electronics Specialists Conference, pp. 1690-1694, June 2007.
[38] C. S. Moo and G. B. Wu, “Maximum Power Point Tracking With Ripple Current Orientation for Photovoltaic Applications,” in IEEE Journal of Emerging and Selected Topics in Power Electronics, vol. 2, no. 4, pp. 842-848, Dec. 2014.
[39] 劉瑋宸, “太陽能電池板之動態等效電路模型” ,國立中山大學電機工程學系碩士論文,2014年7月。
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:自定論文開放時間 user define
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus: 已公開 available


紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code