Responsive image
博碩士論文 etd-0627116-174422 詳細資訊
Title page for etd-0627116-174422
論文名稱
Title
具電池電量與健康狀態線上校準之電池電源系統
Battery Power System with Online SOC and SOH Calibration
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
59
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2016-07-20
繳交日期
Date of Submission
2016-07-27
關鍵字
Keywords
電池健康狀態、庫侖電量累積法、電池電量狀態、電池、電池電源模組
Coulomb counting, Battery, State-of-charge (SOC), State-of-health (SOH), Battery power module (BPM)
統計
Statistics
本論文已被瀏覽 5662 次,被下載 53
The thesis/dissertation has been browsed 5662 times, has been downloaded 53 times.
中文摘要
本論文提出以四組電池電源模組(Battery Power Module, BPM)串聯組成之電池電源系統。其中,各BPM由一雙向降昇壓式轉換器與一磷酸鋰鐵電池組構成,可獨立控制,共同運轉,滿足負載需求或充電條件。此系統以庫侖電量累積法(Coulomb Counting)線上估測所有電池的電量狀態(State-of-Charge, SOC)與電池健康狀態(State-of-Health, SOH)。本論文提出完全校正程序,使電池依預設之操作條件由滿電量放空或由零電量充飽。若電池之初始電量介於滿電量與零電量間,可將電池放空或充飽以完成部分校正程序。系統可利用完全與部分校正程序檢測出的電池最大可釋放容量更新SOH,提升SOC估測準確度。實驗結果證實,此電池電源系統可提供準確的線上SOC估測,並於運作時達成電池電量平衡。
Abstract
A laboratory battery power source is set up by four buck-boost type battery power modules (BPMs) with lithium iron phosphate (LiFePO4) batteries. Real-time estimations of batteries' state-of-charges (SOCs) and state-of-healths (SOHs) by the coulomb counting method are possible since the batteries in BPMs can be individually controlled during either charging or discharging cycle. A standard calibration process is proposed to assess a battery’s SOH by deliberately charging or discharging the battery from empty to full or from full to empty with a scheduled profile. On the other hand, partial calibration can be made in the case that the estimation starts from a status neither full nor empty but ends at the point of empty or full. By identifying the maximum charge status with standard or partial calibration, the SOH of battery in BPMs can be updated accordingly, and then the SOCs can be estimated more precisely. Experimental tests are carried out to demonstrate that the battery power system can provide an accurate online indication of batteries’ SOCs achieve charge equalization and at the same time achieve charge equalization .
目次 Table of Contents
論文審定書 i
論文公開授權書 ii
摘要 iii
Abstract iv
目錄 v
圖次 vii
表次 ix
第一章 簡介 1
1-1 研究背景 1
1-2 研究動機 2
1-3 論文大綱 4
第二章 電池電源系統 5
2-1 降昇壓式電池電源模組 6
2-1-1降昇壓式轉換器 6
2-1-2 同步整流技術 8
2-2 串聯模組 9
2-2-1 連續導通模式 9
2-2-2 不連續導通模式 12
2-3 控制與偵測電路 16
第三章 SOH和SOC之校正程序與運轉策略 19
3-1 電池電量估測法 19
3-2 充放電率 22
3-3 完全校正程序 23
3-4 部分校正程序 25
3-5 運轉策略 26
3-5-1 充電策略 26
3-5-2 放電策略 28
第四章 實例驗證 31
4-1 實驗參數設定 31
4-2 校準實驗 32
4-3 釋出電量比較 40
4-4 SOC估測法比較 41
4-5 累積誤差實驗 42
第五章 結論與未來展望 45
5-1 結論 45
5-2 未來展望 46
參考文獻 47
參考文獻 References
[1] T. Ohzuku and R. J. Brodd, “An Overview of Positive-Electrode Materials for Advanced Lithium-Ion Batteries,” Journal of Power Sources, Vol. 174, pp. 449–456, Dec. 2007.
[2] J. Brunarie, A.-M. Billard, S. Lansburg, and M. Belle, “Lithium-Ion (Li-Ion) Battery Technology Evolves to Serve an Extended Range of Telecom Applications,” in Proc. IEEE INTELEC, pp. 1–9, Oct. 2011.
[3] M.Ombra, F. Di Noto, J. Jaffrain, S. Lansburg, and J. Brunarie, “Hybrid Power Systems Deliver Efficient Energy Management for Off-Grid BTS Sites,” in Proc. IEEE INTELEC, pp. 1–7, Oct. 2012.
[4] X. Li, T. Wang, L. Pei, C. Zhu, and B. Xu, “A Comparative Study of Sorting Methods for Lithium-Ion Batteries,” in Proc. IEEE ITEC Asia-Pacific, pp. 1–6, Aug. 2014.
[5] F. Pizzuti and C. Seguiti, “Power Supply to Telecom Stations Through FC Technology,” in Proc. IEEE INTELEC, pp. 1–3, Oct. 2014.
[6] A. I. Stan, M. Swierczynski, D. I. Stroe, R. Teodorescu, S. J. Andreasen, and K. Moth, “A Comparative Study of Lithium Ion to Lead Acid Batteries for Use in UPS Applications,” in Proc. IEEE INTELEC, pp. 1–8, Oct. 2014.
[7] H. Oman, “Battery Developments That Will Make Electric Vehicles Practical,” IEEE Aerosp. Electron. Syst. Mag., Vol. 15, no. 8, pp. 11–21, Aug. 2000.
[8] H. F. Dai, X. L. Zhang, W.J. Gu, X.H. Wei, and Z.H. Sun, “A Semi-Empirical Capacity Degradation Model of EV Li-Ion Batteries Based on Eyring Equation,” in IEEE VPPC, pp. 1–5, Oct. 2013.
[9] F. He, W.X. Shen, Q. Song, A. K. D. Honnery, and D. Dayawansa, “Clustering LiFePO4 Cells for Battery Pack Based on Neural Network in EVs,” in Proc. IEEE ITEC Asia-Pacific, pp. 1–5, Aug. 2014.
[10] J. Liu, A. Kahaian, I. Belharouak, S. Kang, S. Oliver, G. Henriksen, and K. Amine, “Screening Report on Cell Materials for High Power Li-Ion HEV Batteries,” from Department of Energy, USA, Apr. 2003.
[11] L. Ahmadia, M. Fowlerb, S. B. Youngc, R. A. Frasera, B. Gaffneya, and S. B. Walkerb, “Energy Efficiency of Li–Ion Battery Packs Re–Used in Stationary Power Applications,” Journal of Power Sources, Vol. 8, pp. 9–17, 2014.
[12] V. V. Viswanathan and M. Kintner-Meyer, “Second Use of Transportation Batteries: Maximizing the Value of Batteries for Transportation and Grid Services,” IEEE Trans. Veh. Technol., Vol. 60, no.7, pp. 2963–2970, Sep. 2011.
[13] M. Einhorn, R. Permann, W. Guertlschmid, T. Blochberger, and J. Fleig, “Current Equalization of Serially Connected Battery Cells for a Possible Second Life Application,” in Proc. IEEE VPPC, pp. 1–5, Sep. 2011.
[14] N. Mukherjee, D. Strickland, A. Cross, and W. Hung, “Reliability Estimation of Second Life Battery System Power Electronic Topologies for Grid Frequency Response Applications,” in Proc. IET PEMD, pp. 1–6, Mar. 2012.
[15] N. Mukherjee and D. Strickland, “Modular ESS With Second Life Batteries Operating in Grid Independent Mode,” in Proc. IEEE PEDG, pp. 653–660, June 2012.
[16] M. A. Monem, et al., “Comparative Study of Different Multilevel DC/DC Converter Topologies for Second-Life Battery Applications,” in Proc. IEEE EVS27, pp. 1–10, Nov. 2013.
[17] D. Strickland, L. Chittock, D. A. Stone, M. P. Foster, and B. Price, “Estimation of Transportation Battery Second Life for Use in Electricity Grid Systems,” IEEE Trans. Sustain. Energy, Vol. 5, no. 3, pp. 795–803, July 2014.
[18] P. J. Hart, P. J. Kollmeyer, L. W. Juang, R. H. Lasseter, and T. M. Jahns, “Modeling of Second-Life Batteries for Use in a CERTS Microgrid,” in Proc. IEEE PECI, pp. 1–8, Feb./Mar. 2014.
[19] F. D. Zheng, J. C. Jiang, W. G. Zhang, B. X. Sun, C. P. Zhang, and Y. K. Wang, “Capacity Estimation of Large-Scale Retired Li-Ion Batteries for Second Use Based on Support Vector Machine,” in Proc. IEEE ISIE, pp. 1628–1634, June 2014.
[20] N. Mukherjee and D. Strickland, “Second Life Battery Energy Storage Systems: Converter Topology and Redundancy Selection,” in Proc. 7th IEEE IET int. PEMD, pp. 1–6, Apr. 2014.
[21] W. C. Lih, J. H. Yen, F. H. Shieh, and Y. M. Liao, “Second Use of Retired Lithium-Ion Battery Packs From Electric Vehicles: Technological Challenges, Cost Analysis and Optimal Business Model,” in Proc. IS3C, pp. 381–384, June 2012.
[22] D. T. Gladwin, C. R. Gould, D. A. Stone, and M. P. Foster, “Viability of ‘Second-Life’ Use of Electric and Hybrid Electric Vehicle Battery Packs,” in Proc. IEEE IECON, pp. 1922–1927, Nov. 2013.
[23] A. Burke and M. Miller, “Life Cycle Testing of Lithium Batteries for Fast Charging and Second-Use Applications,” in Proc. IEEE EVS27, pp. 1–10, Nov. 2013.
[24] A. Keeli and R. K. Sharma, “Optimal Use of Second Life Battery for Peak Load Management and Improving the Life of the Battery,” in Proc. IEEE IEVC, pp. 1–6, Mar. 2012.
[25] J. Neubauer and A. Pesaran, “PHEV/EV Li-Ion Battery Second-Use Project,” from National Renewable Energy Laboratory (NREL), Department of Energy USA, Apr. 2010.
[26] W. Hong, K. S. Ng, J. H. Hu, and C. S. Moo, “Charge Equalization of Battery Power Modules in Series,” in IEEE IPEC, pp. 1568–1572, June 2010.
[27] 黃廣順,“電池電源模組之架構與運轉”,國立中山大學電機工程研究所博士論文,2009年6月。
[28] 胡錦欣,“電池電源模組之輸出串聯運轉”,國立中山大學電機工程研究所碩士論文,2009年6月。
[29] 簡振宇,“串聯降昇壓式電池電源模組充電策略”,國立中山大學電機工程研究所碩士論文,2013年4月。
[30] 侯至豪,“降升壓型電池電源模組串並聯平衡放電”,國立中山大學電機工程研究所碩士論文,2013年6月。
[31] 陳怡萍,“鉛酸與鋰離子蓄電池之電量估測”,國立中山大學電機工程研究所碩士論文,2007年6月。
[32] S. Piller, M. Perrin, and A. Jossen, “Methods for State-of-Charge Determination and Their Applications,” Journal of Power Sources, Vol. 96, no. 1, pp. 113–120, June 2001.
[33] S. Pang, J. Farrell, D. Jie, and M. Barth, “Battery State-of-Charge Estimation,” in Proc. IEEE ACC, Vol. 2, pp. 1644–1649, June 2001.
[34] J. H. Aylor, A. Thieme, and B. W. Johnso, “A battery State-of-Charge Indicator for Electric Wheelchairs,” IEEE Trans. Ind. Electron., Vol. 39, no. 5, pp. 398-409, Oct. 1992.
[35] V. Pop, H. J. Bergveld, P. H. L. Notten, and P. P. L. Regtien, “State-of-Charge Indication in Portable Applications,” in Proc. ISIE, Vol. 3, pp. 1007-1012, June 2005.
[36] A. Kawamura and T. Yanagihara, “State of Charge Estimation of Sealed Lead-Acid Batteries Used for Electric Vehicles,” in Proc. PESC, Vol. 1, pp. 583-587, May. 1998.
[37] I. Kurisawa and M. Iwata, “Internal Resistance and Deterioration of VRLA Battery-Analysis of Internal Resistance Obtained by Direct Current Measurement and its Application to VRLA Battery Monitoring Technique,” in Proc. INTELEC, pp. 687–694, Oct. 1997.
[38] K. S. Ng, Y. F. Huang, and C. S. Moo, “An Enhanced Coulomb Counting Method for Estimating State-of-Charge and State-of-Health of Lead-Acid Batteries,” in Proc. IEEE INTELEC, pp. 1–5, Oct. 2009.
[39] I. Buchmann, Batteries in a Portable World -A Handbook on Rechargeable Batteries for Non-Engineers, 3rd ed. Richmond, BC, Canada: Cadex Electronics Inc., 2011.
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:自定論文開放時間 user define
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus: 已公開 available


紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code