Responsive image
博碩士論文 etd-0627116-174600 詳細資訊
Title page for etd-0627116-174600
論文名稱
Title
呼吸器增加鮑氏不動桿菌引起的肺部損傷機制探討
Ventilation enhanced lung injury caused by Acinetobacter baumannii
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
78
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2016-06-24
繳交日期
Date of Submission
2016-07-27
關鍵字
Keywords
NF-κB、TNF-α、鮑氏不動桿菌、呼吸器相關性肺炎、JNK
TNF-α, JNK, NF-κB, Ventilator-associated pneumonia, Acinetobacter baumannii
統計
Statistics
本論文已被瀏覽 5754 次,被下載 115
The thesis/dissertation has been browsed 5754 times, has been downloaded 115 times.
中文摘要
肺是維持生命的重要器官,使用呼吸器的目的主要是協助病人渡過急性呼吸衰竭,但長時間使用可能對肺部造成二次傷害並增加呼吸器相關性肺炎(ventilator-associated pneumonia, VAP)的發生,嚴重時甚至會導致死亡。呼吸器會降低肺泡巨噬細胞的抗菌能力而增加呼吸器相關性肺炎的發生。近來許多研究指出鮑氏不動桿菌(A. baumannii)是加護病房中病患因使用呼吸器發生肺炎時常見的致病菌,且造成的感染因對抗生素具抗性而難以治療。因此,為探討鮑氏不動桿菌造成肺部損傷的機制,將鮑氏不動桿菌以鼻腔注射方式注入C57BL/6 (WT)和JNK1-/-小鼠,並於48小時後連接呼吸器3小時再進行肺部損傷情形分析。結果顯示,給予鮑氏不動桿菌再連接呼吸器時,WT小鼠肺部的嗜中性白血球浸潤程度、肺泡沖提液的一氧化氮含量皆明顯增加,但在體外將巨噬細胞以鮑氏不動桿菌刺激的上清液中TNF-α含量明顯少於綠膿桿菌刺激的組別,且在體外對鮑氏不動桿菌的抗菌能力也較差,此結果極可能是造成肺部損傷的主因。而當給予鮑氏不動桿菌再連接呼吸器時,JNK1-/-小鼠的肺部發炎及損傷均減緩,且其巨噬細胞受鮑氏不動桿菌刺激後上清液中TNF-α含量低於WT小鼠,而當IKK△mye小鼠的巨噬細胞受鮑氏不動桿菌刺激後,上清液中TNF-α的含量則明顯下降。綜合以上結果,本研究模式中,鮑氏不動桿菌及呼吸器會促進肺部NF-κB及JNK訊息傳遞路徑的活化,進而增加肺部損傷的程度。
Abstract
Ventilator-associated pneumonia (VAP) continues to be a major cause of high morbidity and mortality for patients using ventilators. Patients in ICUs often receive broad-spectrum antibiotic treatment and multidrug resistant Pseudomonas aeruginosa and Acinetobacter baumannii were the most common pathogens causing VAP. When lung is stimulated, lung-resident monocytes/ macrophages are recruited and release inflammatory cytokines/chemokines which induce lung injury. Alveolar macrophages (AMs) are in most frequent contact with external stimuli which can initiate phagocytosis to clear infection and regulate the secretion of cytokines/chemokines. Previous studies with a mouse model showed that VAP caused by P. aeruginosa involved TNF-α production through NF-κB activation in AMs and JNK signaling in lungs. In current study, C57BL/6 mice intranasally instilled with A. baumannii showed a significant increase of neutrophil infiltration into lungs after ventilation, and the NO level in bronchoalveolar lavage fluid (BALF) collected from mice instilled with A. baumannii was higher than instilled with P. aeruginosa. When JNK1-/- mice receiving the instillation of A. baumannii, the level of MPO activity, total cells in BALF, nitrite in BALF and nitrite in serum were all lower when compared to WT mice. These results indicated a lower inflammation level and lung damage in JNK1-/- mice. However, the killing activity of AMs against A. baumannii was lower than P. aeruginosa whether with or without ventilation. The decreased killing activity was parallel with decreased TNF-α production by AMs when challenged with A. baumannii. These results suggest that the pathogenesis mechanism of VAP caused by A. baumannii was related to the activation of NF-κB and JNK signaling pathway.
目次 Table of Contents
論文審定書………..……………………………………………………...i
論文授權書…………..…………………………………………………..ii
致謝……………...…..…………………………………………………..iii
Abstract in Chinese……………………………………………………....iv
Abstract in English………………………………………………………..v
List of Abbreviations……………………………………………………vii
Introduction……………………………………………………………….1
Materials and Methods……………………………………………...…..10
Results…………………………………………………………...……....18
Discussion………………………………..……………………….…......27
Figures…………………………………………………………………...36
Tables...………………………………………………...………………..58
Appendix…………………………………………………………….......62
References……………………………………………………………….64
參考文獻 References
Reference
1. Esteban A, Anzueto A, AlÍA I, Gordo F, ApezteguÍA C, PÁLizas F, Cide D, Goldwaser R, Soto L, Bugedo G, Rodrigo C, Pimentel J, Raimondi G, Tobin M. How Is Mechanical Ventilation Employed in the Intensive Care Unit? American Journal of Respiratory and Critical Care Medicine 2000; 161: 1450-1458.
2. Heyland DK, Cook DJ, Griffith L, Keenan SP, Brun-Buisson C. The Attributable Morbidity and Mortality of Ventilator-Associated Pneumonia in the Critically Ill Patient. American Journal of Respiratory and Critical Care Medicine 1999; 159: 1249-1256.
3. Budweiser S, Jörres RA, Pfeifer M. Treatment of respiratory failure in COPD. International Journal of Chronic Obstructive Pulmonary Disease 2008; 3: 605-618.
4. Cannizzaro V, Hantos Z, Sly PD, Zosky GR. Linking lung function and inflammatory responses in ventilator-induced lung injury. American Journal of Physiology - Lung Cellular and Molecular Physiology 2011; 300: L112-L120.
5. Wilson MR, O'Dea KP, Zhang D, Shearman AD, van Rooijen N, Takata M. Role of Lung-marginated Monocytes in an In Vivo Mouse Model of Ventilator-induced Lung Injury. American Journal of Respiratory and Critical Care Medicine 2009; 179: 914-922.
6. Labarca JA, Salles MJ, Seas C, Guzman-Blanco M. Carbapenem resistance in Pseudomonas aeruginosa and Acinetobacter baumannii in the nosocomial setting in Latin America. Critical reviews in microbiology 2016; 42: 276-292.
7. Jiang Y-Z. Pseudomonas aeruginosa colonization increased the ventilator-associated pneumonia in mice through the TNF-α and JNK signaling pathway. Department of biological sciences: National Sun Yat-sen university master thesis; 2014.
8. Mattner F, Gastmeier P, Centers of Disease C, Prevention, Healthcare Infection Control Practices Advisory C. [Guidelines for preventing health-care-associated pneumonia]. Anasthesiol Intensivmed Notfallmed Schmerzther 2005; 40: 79-84.
9. Zander E, Chmielarczyk A, Heczko P, Seifert H, Higgins PG. Conversion of OXA-66 into OXA-82 in clinical Acinetobacter baumannii isolates and association with altered carbapenem susceptibility. Journal of Antimicrobial Chemotherapy 2013; 68: 308-311.
10. Harris G, Kuo Lee R, Lam CK, Kanzaki G, Patel GB, Xu HH, Chen W. A Mouse model of Acinetobacter baumannii-associated pneumonia using a clinically isolated hypervirulent strain. Antimicrobial Agents and Chemotherapy 2013; 57: 3601-3613.
11. Necati Hakyemez I, Kucukbayrak A, Tas T, Burcu Yikilgan A, Akkaya A, Yasayacak A, Akdeniz H. Nosocomial Acinetobacter baumannii infections and changing antibiotic resistance. Pakistan Journal of Medical Sciences 2013; 29: 1245-1248.
12. Bradley JR. TNF-mediated inflammatory disease. The Journal of Pathology 2008; 214: 149-160.
13. Cleaver JO, You D, Michaud DR, Guzman Pruneda FA, Leiva Juarez MM, Zhang J, Weill PM, Adachi R, Gong L, Moghaddam SJ, Poynter ME, Tuvim MJ, Evans SE. Lung epithelial cells are essential effectors of inducible resistance to pneumonia. Mucosal Immunol 2014; 7: 78-88.
14. Schwander S, Dheda K. Human lung Iimmunity against Mycobacterium tuberculosis: insights into pathogenesis and protection. American Journal of Respiratory and Critical Care Medicine 2011; 183: 696-707.
15. Bowden DH. The alveolar macrophage. Environmental Health Perspectives 1984; 55: 327-341.
16. Sibille Y, Reynolds HY. Macrophages and polymorphonuclear neutrophils in lung defense and injury. American Review of Respiratory Disease 1990; 141: 471-501.
17. Spelman K BJ, Nichols D, Winters N, Ottersberg S, Tenborg M. Modulation of cytokine expression by traditional medicines: a review of herbal immunomodulators. Altern Med Rev 2006; 11(2): 128-150.
18. Mora AL, Torres-González E, Rojas M, Corredor C, Ritzenthaler J, Xu J, Roman J, Brigham K, Stecenko A. Activation of alveolar macrophages via the alternative pathway in herpesvirus-induced lung fibrosis. American Journal of Respiratory Cell and Molecular Biology 2006; 35: 466-473.
19. Lin C-Y, Zhang H, Cheng K-C, Slutsky AS. Mechanical ventilation may increase susceptibility to the development of bacteremia. Critical Care Medicine 2003; 31: 1429-1434.
20. Wolters PJ, Wray C, Sutherland RE, Kim SS, Koff J, Mao Y, Frank JA. Neutrophil-derived IL-6 limits alveolar barrier disruption in experimental ventilator-induced lung injury. The Journal of Immunology 2009; 182: 8056-8062.
21. Tsujimoto H, Ono S, Mochizuki H, Aosasa S, Majima T, Ueno C, Matsumoto A. Role of macrophage inflammatory protein 2 in acute lung injury in murine peritonitis. Journal of Surgical Research 2002; 103: 61-67.
22. Mukhopadhyay S, Hoidal JR, Mukherjee TK. Role of TNFalpha in pulmonary pathophysiology. Respiratory research 2006; 7: 125.
23. Peng X, Abdulnour RE, Sammani S, Ma SF, Han EJ, Hasan EJ, Tuder R, Garcia JG, Hassoun PM. Inducible nitric oxide synthase contributes to ventilator-induced lung injury. Am J Respir Crit Care Med 2005; 172: 470-479.
24. Qiu H, KuoLee R, Harris G, Van Rooijen N, Patel GB, Chen W. Role of macrophages in early host resistance to respiratory Acinetobacter baumannii Infection. PLoS ONE 2012; 7: e40019.
25. Tipoe GLL, T.M.; Liong,E.; So, H.; Leung,K. M.;Lau, T.Y.H.;Tom, W.M.;Fung, M.L. ;Fan, S.T.;Nanji, A. A. Inhibitors of inducible nitric oxide (NO) synthase are more effective than an NO donor in reducing carbon-tetrachloride induced acute liver injury. Histol Histopathol 2006; 21: 1157-1165.
26. McKim SE, Gäbele E, Isayama F, Lambert JC, Tucker LM, Wheeler MD, Connor HD, Mason RP, Doll MA, Hein DW, Arteel GE. Inducible nitric oxide synthase is required in alcohol-induced liver injury: studies with knockout mice. Gastroenterology 2003; 125: 1834-1844.
27. Jacobson JR, Birukov KG. Activation of NFκB and coagulation in lung injury by hyperoxia and excessive mechanical ventilation: one more reason "low and slow" is the way to go? Translational research : the journal of laboratory and clinical medicine 2009; 154: 219-221.
28. Lawrence T. The nuclear factor NF-kappaB pathway in inflammation. Cold Spring Harbor perspectives in biology 2009; 1: a001651.
29. Xie QW, Kashiwabara Y, Nathan C. Role of transcription factor NF-kappa B/Rel in induction of nitric oxide synthase. Journal of Biological Chemistry 1994; 269: 4705-4708.
30. D'Acquisto F, Iuvone T, Rombolà L, Sautebin L, Di Rosa M, Carnuccio R. Involvement of NF-κB in the regulation of cyclooxygenase-2 protein expression in LPS-stimulated J774 macrophages. FEBS Letters 1997; 418: 175-178.
31. Ma H, Feng X, Ding S. Hesperetin attenuates ventilator-induced acute lung injury through inhibition of NF-κB-mediated inflammation. European Journal of Pharmacology 2015; 769: 333-341.
32. Makena PS, Gorantla VK, Ghosh MC, Bezawada L, Balazs L, Luellen C, Parthasarathi K, Waters CM, Sinclair SE. Lung injury caused by high tidal volume mechanical ventilation and hyperoxia is dependent on oxidant-mediated c-Jun NH(2)-terminal kinase activation. Journal of Applied Physiology 2011; 111: 1467-1476.
33. Tong J, Zhou XD, Kolosov VP, Perelman JM. Role of the JNK pathway on the expression of inflammatory factors in alveolar macrophages under mechanical ventilation. International immunopharmacology 2013; 17: 821-827.
34. Wagner EF, Nebreda AR. Signal integration by JNK and p38 MAPK pathways in cancer development. Nature reviews Cancer 2009; 9: 537-549.
35. van Faassen H, KuoLee R, Harris G, Zhao X, Conlan JW, Chen W. Neutrophils play an important role in host resistance to respiratory infection with Acinetobacter baumannii in mice. Infection and Immunity 2007; 75: 5597-5608.
36. Qiu H, KuoLee R, Harris G, Chen W. Role of NADPH phagocyte oxidase in host defense against acute respiratory Acinetobacter baumannii Infection in Mice. Infection and Immunity 2009; 77: 1015-1021.
37. Qiu H, KuoLee R, Harris G, Chen W. High susceptibility to respiratory Acinetobacter baumannii infection in A/J mice is associated with a delay in early pulmonary recruitment of neutrophils. Microbes and Infection 2009; 11: 946-955.
38. Wu H, Zhao G, Jiang K, Chen X, Zhu Z, Qiu C, Li C, Deng G. Plantamajoside ameliorates lipopolysaccharide-induced acute lung injury via suppressing NF-κB and MAPK activation. International immunopharmacology 2016; 35: 315-322.
39. Ghazavi A, Mosayebi G, Solhi H, Rafiei M, Moazzeni SM. Serum markers of inflammation and oxidative stress in chronic opium (Taryak) smokers. Immunology Letters 2013; 153: 22-26.
40. Yang Y-S, Lee Y-T, Huang T-W, Sun J-R, Kuo S-C, Yang C-H, Chen T-L, Lin J-C, Fung C-P, Chang F-Y. Acinetobacter baumannii nosocomial pneumonia: is the outcome more favorable in non-ventilated than ventilated patients? BMC Infectious Diseases 2013; 13: 1-8.
41. Ko Y-A, Yang M-C, Huang H-T, Hsu C-M, Chen L-W. NF-κB activation in myeloid cells mediates ventilator-induced lung injury. Respiratory research 2013; 14: 69-69.
42. KuoLee R, Harris G, Yan H, Xu HH, Conlan WJ, Patel GB, Chen W. Intranasal immunization protects against Acinetobacter baumannii-associated pneumonia in mice. Vaccine 2015; 33: 260-267.
43. Javelaud DW, J.; Delattre O.; Besançon F. Induction of p21Waf1/Cip1 by TNFalpha requires NF-kappaB activity and antagonizes apoptosis in Ewing tumor cells. Oncogene 2000; 19: 61-68.
44. Li L, Wang L, Wu Z, Yao L, Wu Y, Huang L, Liu K, Zhou X, Gou D. Anthocyanin-rich fractions from red raspberries attenuate inflammation in both RAW264.7 macrophages and a mouse model of colitis. Scientific Reports 2014; 4: 6234.
45. Limtrakul P, Yodkeeree S, Pitchakarn P, Punfa W. Anti-inflammatory effects of proanthocyanidin-rich red rice extract via suppression of MAPK, AP-1 and NF-κB pathways in Raw 264.7 macrophages. Nutr Res Pract 2016; 10.
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:自定論文開放時間 user define
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus: 已公開 available


紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code