Responsive image
博碩士論文 etd-0627118-114428 詳細資訊
Title page for etd-0627118-114428
論文名稱
Title
時間對準及降低類比數位轉換器頻寬之延遲分復用正交分頻多工被動式光纖網路
Time Synchronization and Reduction in ADC Bandwidth in Delay-Division-Multiplexing OFDM-PONs
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
68
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2018-07-26
繳交日期
Date of Submission
2018-08-01
關鍵字
Keywords
訊號調變、正交分頻多址、數位訊號處理、被動式光纖網路、正交分頻多工、延時分復用
Orthogonal Frequency Division Multiplexing Access (OFDMA), Signal Modulation, Digital Signal Process (DSP), Passive Optical Network (PON), Orthogonal Frequency Division Multiplexing (OFDM), Delay Division Multiplexing (DDM)
統計
Statistics
本論文已被瀏覽 5642 次,被下載 0
The thesis/dissertation has been browsed 5642 times, has been downloaded 0 times.
中文摘要
隨著現代網際網路發達,人們對於寬頻資料傳輸的需求日益增強,因此如何以簡單、快速並且符合經濟效益的方式處理訊號成了現代通訊技術發展的重要課題。
相較於傳統同軸電纜或是無線通訊,光纖通信系統對於降低傳輸損耗是一項很好的選擇,並將正交分頻多工技術(OFDM)應用於被動式光纖網路(PON)可供增加頻譜使用效率及降低硬體成本的優勢。不過傳統正交分頻多工被動式光纖網路中,需要高速的轉換器才能解調訊號,導致用戶接收多餘的訊號也不利於降低系統成本。有賴於延遲分復用正交分頻多工被動式光網路(delay division multiplexing OFDM-PON)的開發,在估測通道及解調信號已經能夠以低取樣率完成,而本論文則是建立於這樣的基礎下,討論如何使低取樣率的用戶端找到精確的起始點,並在傳輸容量25 Gbps時,由時間對準不精確造成的信號雜訊比損耗僅0.24 dB;然而低取樣率的轉換器暗示著其低頻寬的問題,因此本篇論文中會以光波塑形的方式,使信號在光上先行達到混疊效果,並且有機會使信號雜訊比提高3.5 dB。
Abstract
Due to the development of modern Internet, the demand for broadband transmission is exponentially increasing. Therefore, how to process signals in a simple, fast and economical way has become an important issue in the development of modern communication technologies.
Compared to traditional coaxial cable or wireless communication, optical fiber communication system is preferable for reducing transmission loss. The application of Orthogonal Frequency Division Multiplexing (OFDM) technology to Passive Optical Network (PON) can have the advantages of higher spectrum efficiency and lower costs. However, in the traditional OFDM PONs, a high-speed analog-to-digital converter is required to demodulate the signal, composed of demand and redundant parts, which is not conducive to reducing the system cost. In a delay-division multiplexing (DDM) OFDM passive optical network (PON), a low-sampling-rate convertor has been proposed to estimate channel response and to demodulate signal. To achieve required sampling delays in a DDM-OFDM-PON, this dissertation proposes a time-synchronization scheme, such that the penalty in SNR caused by imprecise sampling delay can be less than 0.24 dB. Moreover, a practical low-sampling-rate converter generally has low bandwidth, but high bandwidth is required in a DDM PON to enable necessary aliasing. Therefore, the scheme of optical gating is proposed to achieve the effect of spectrum aliasing in the optical domain, so the high frequency signal can be retained using a low-sampling-rate converter of low bandwidth, and SNR is expected to increase by 3.5 dB.
目次 Table of Contents
論文審定書 i
致謝 ii
中文摘要 iii
Abstract iv
圖次 vii
第一章 緒論 1
1-1 前言 1
1-2 研究動機 1
第二章 延遲分復用正交分頻多工技術 4
2-1 正交分頻多工(接取)被動式光網路 4
2-1-1 被動式光網路 4
2-1-2 正交分頻多工 5
2-1-3 正交分頻多工接取被動式光網路 7
2-2 延遲分復用正交分頻多工 8
2-2-1 前言 8
2-2-2 次奈奎斯特取樣 9
2-2-3 時間平移和頻域相位的轉換 11
2-2-4 延遲分復用正交分頻多工概念 11
2-2-5 預置信號處理的數學表示 13
2-2-5-1 通道分析 13
2-2-5-2 預置處理與取樣延遲 16
第三章 延遲分復用正交分頻多工之時間對準及降低轉換器頻寬 20
3-1 延遲分復用正交分頻多工之低取樣率的時間對準 20
3-1-1 次奈奎斯特取樣率下求得通道係數 20
3-1-1-1 Localized方法 20
3-1-1-2 Whole-band方法 22
3-1-2 延遲分復用正技術之時間對準方法簡介 25
3-1-3 頻域中的相位補償 26
3-2 延遲分復用正交分頻多工以光波塑形技術拓寬轉換器之不足頻寬 28
3-2-1 光波塑形技術簡介 28
3-2-2 以馬赫-曾德爾調變器產生33%脈衝 31
第四章 實驗架構與結果 34
4-1 延遲分復用正交分頻多工低取樣率的時間對準實驗結果 34
4-1-1 實驗架構 34
4-1-1 時間對準之功率損失轉換表 35
4-1-2 高取樣率相關性時間對準 36
4-1-3 以全頻寬相位補償之時間對準 37
4-1-4 以子頻段相位補償之時間對準 38
4-2 延遲分復用正交分頻多工之光波塑形實驗結果 39
4-2-1 VPI模擬架構 39
4-2-1-1 光波塑形對通道係數影響 40
4-2-1-2 光波塑形的SNR結果 47
4-2-2 實驗架構 48
4-2-2-1 光波塑形對通道係數及SNR影響 49
4-2-2-2 不完美的33%脈衝對實驗的影響 51
第五章 結論 55
參考文獻 57
參考文獻 References
[1] Cisco, “Cisco Visual Networking Index: Global Mobile Data Traffic Forecast Update, 2016–2021,” 2017.
[2] T. Koonen, "Fiber to the Home/Fiber to the Premises: What, Where, and When?," Proceedings of the IEEE, Volume: 94, Issue: 5, p. 911–934, May 2006.
[3] C. C. Wei, H. C. Liu and C. T. Lin, "Novel Delay-Division-Multiplexing OFDMA Passive Optical Networks Enabling Low-Sampling-Rate ADC," in Optical Fiber Communication Conference, Los Angeles, California United States, 2015.
[4] C. C. Wei, H. C. Liu and C. T. Lin, "Analog-to-Digital Conversion Using Sub-Nyquist Sampling Rate in Flexible Delay-Division Multiplexing OFDMA PONs," Journal of Lightwave Technology, Volume: 34, Issue: 10, p. 2381–2390, 15 May 2016.
[5] J. H. Hs, M. Yu, C. C. Wei, C. H. Lin, C. T. Lin, F. Liu, L. Zhou and L. M. Fang, "Novel DDM-OFDM-PON with Hybrid Sub-Nyquist Sampling Rates Featuring Heterogeneous ONUs with Different Capacities," in Optical Fiber Communication Conference, San Diego, United States, 2018.
[6] J.-H. Hsu, High-performance and Flexible Delay Division Multiplexing OFDM-PONs enabled by Novel Digital Signal Processing Technologies, Department of Photonics National Sun Yat-sen University Master Thesis, 2018.
[7] M. Yu, W. L. Chen, C. C. Wei and C. T. Lin, "Time Synchronization in Delay-Division-Multiplexing OFDM-PON Using Sub-Nyquist Sampling," in will be submit at microoptics conference, Taipei, Taiwan, 2018.
[8] Elbers, K. Grobe and J.-P, "PON in Adolescence: From TDMA to WDM-PON," IEEE communications magazine,volume. 46, p. 26–34, January 2008.
[9] D. Hillerkuss, R. Schmogrow and J. Leuthold, "26 Tbit s^-1 line-rate super-channel transmission utilizing all-optical fast Fourier transform processing," nature photonic, p. 364–371, 22 May 2011.
[10] J. Armstrong, "OFDM for optical communications," Journal of Lightwave Technology, Volume: 27, Issue: 3, p. 189–204, 1 February 2009.
[11] N. Cvijetic, D. Qian and J. Hu, "100 Gb/s optical access based on optical orthogonal frequency-division multiplexing," IEEE Communications Magazine, Volume. 48, Issue. 7, p. 70–77, July 2010.
[12] "The IEEE 802.16 Working Group on Broadband Wireless Access Standards," [Online]. Available: http://www.ieee802.org/16/.
[13] A. V. Oppenheim, A. S. Willsky and S. H. Nawab, in Signals & systems, USA, 1996.
[14] "Equalizing Techniques Flatten DAC Frequency Response," [Online]. Available: https://www.maximintegrated.com/en/.
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:自定論文開放時間 user define
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus: 已公開 available


紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code