Responsive image
博碩士論文 etd-0628100-103549 詳細資訊
Title page for etd-0628100-103549
論文名稱
Title
馬拉巴石斑稚魚之最適鋅需求
Dietary zinc requirement of the juvenile grouper (Epinephelus malabaricus)
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
72
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2000-06-12
繳交日期
Date of Submission
2000-06-28
關鍵字
Keywords
魚類營養、鋅、石斑魚、鋅需求
fish nutrition, grouper, zinc, zinc requirement
統計
Statistics
本論文已被瀏覽 5726 次,被下載 7990
The thesis/dissertation has been browsed 5726 times, has been downloaded 7990 times.
中文摘要
本研究之目的在探討馬拉巴石斑稚魚之最適鋅需求。實驗飼料以蛋清蛋白粉與土魠鰆肌肉粉提供52%之粗蛋白。鋅含量為10.0 mg/kg的基本飼料,分別添加0、4、8、12、24、36、140 mg/kg的硫酸鋅配製成實驗飼料。馬拉巴石斑稚魚初重5.9公克,每缸十二尾,每飼料處理組各有三重複,每日餵食量約魚體濕重的4%,經十八週的飼育,飼料中之鋅含量顯著影響馬拉巴石斑稚魚的成長,無添加鋅組之增重率及飼料效率顯著低下。而鋅添加對活存率、肥滿度、肌肉組成、脊椎與鱗片灰份含量、各血液學分析皆無顯著影響。飼料鋅添加對馬拉巴石斑魚血清、肌肉、脊椎、鱗片之鋅含量造成顯著影響。就非專一性免疫為指標的研究發現:飼料鋅添加對巨噬細胞的吞噬力並無顯著影響,同樣的替代路徑補體活性、凝集力價與溶菌酵素活性皆無顯著變化。同樣的飼料鋅添加對含銅、鋅之金屬酵素,超氧歧化酵素(SOD)活性亦無造成顯著影響。將增重率、飼料效率、血清鋅含量、脊椎鋅含量與鱗片鋅含量等參數以Broken-line模式推估馬拉巴石斑稚魚鋅需求量分別為33.7、35.6、32.5、28.9及32.6 mg Zn /kg,因此為了維持馬拉巴石斑稚魚之適當成長與組織正常含鋅量,飼料最適鋅含量介於28-36 mg/kg之間。
Abstract
The purpose of the present study was to quantify the optimal zinc requirements of juvenile grouper (Epinephelus malabaricus). Basal diet contained 52 % crude protein from derived egg white and mackerel(Scomberomorus commerson)muscle. This semipurified basal diet which contained 10.0 mg Zn/kg was supplemented with ZnSO4 at levels of 0, 4, 8, 12, 24, 36 or 140 mg Zn/kg, respectively. The test diets were fed to juvenile groupers with an initial weight of about 5.9 g. All treatments were triplicated, each tank had 12 fish. After 18 weeks of rearing, dietary zinc levels have significant effects on the growth of fish. Weight gain and feed efficiency were significantly lower in grouper fed the unsupplemental diet than the supplemental groups. No significant difference among fish groups was found in survival rate, condition factor, muscle composition, ash contents of vertebra and scale, as well as some hematological parameters. Zinc concentrations in serum, muscle, vertebra and scale were affected by the supplemental zinc level. There was no significant difference in nonspecific immunity parameters including phagocytosis of macrophage, alternative complement pathway (ACH50) activity, agglutination titer and lysozyme activity among dietary treatments. The activity of the copper and zinc metalloenzyme superoxide dismutas in red blood cells was also not affected by dietary zinc intake. Broken-line regression analysis of weight-gain, feed efficiency as well as serum-, vertebra- and scale zinc concentrations against dietary zinc intake indicated requirement values of 33.7, 35.6, 32.5, 28.9 and 32.6 mg Zn/kg diet, respectively. Therefore, based on the results of growth performance and tissue zinc concentrations, the dietary zinc requirement of the juvenile groupers was between 28-36 mg Zn/kg diet.
目次 Table of Contents
中文摘要
英文摘要
謝辭
文獻回顧
前言
材料方法
結果
討論
參考文獻
履歷表

參考文獻 References
行政院農業委員會,2000。全國養殖漁業會議總結論報告。行政院農業委員會,台北。6頁。
林敬二、林宗義審譯,1994。儀器分析。譯自Principles of instrumental analysis, Fourth edition.。美亞書版,台北,750頁。
林清龍、吳慶麗、陳秀男,1997。石斑魚病害與處理。行政院農業委員會,台北。68頁。
吳建達,1997。馬拉巴石斑魚對礦物質需求量及磷需求量之探討。國立台灣海洋大學水產養殖研究所碩士論文。151頁。
呂明毅,1998a。石斑魚的繁養殖(二)。漁業週訊。626:3。
呂明毅,1998b。石斑魚的繁養殖(三)。漁業週訊。627:3。
黃貴民,1999。實用石斑魚養殖。水產養殖,台北。185頁。
AOAC, 1984. Official methods of analysis of the association of official analytical chemist, 14th edn. Washington DC, USA.
Blazer, V. S. 1991. Piscine macrophage function and nutritional influences: a review. Journal of Aquatic Animal Health 3:77-86.
Chen, H. Y., and J. C. Tsai. 1994. Optimal dietary protein level for the growth of juvenile grouper, Epinephelus malabaricus, fed semipurified diets. Aquaculture 119:265-271.
Chen, R. W., E. J. Vasey, and P. D. Whanger. 1977. Accumulation and depletion of zinc in rat liver and kidney metallothioneins. Journal of Nutrition 107:375-384.
Cousins, R. J., and J. M. Hempe. 1990. Zinc. Pages 251-260 in M. L. Brown, editor. Present Knowledge in Nutrition. International Life Sciences Institute Nutrition Foundation, Washington, DC, USA.
Cunningham-Rundles, S., and W. F. Cunningham-Rundles.1988. Zinc modulation of immune response. Pages 197-214 in R. K. Chandra, editor. Nutrition and Immunology. Alan R. Liss, Inc., New York, U.S.A.
De Rosa, G., C. L. Keen, R. M. Leach, and L. S. Hurley. 1980. Regulation of superoxide dismutase activity by dietary manganese. Journal of Nutrition 110:795-804.
Eid, A. E., and S. I. Ghonim. 1994. Dietary zinc requirement of fingerling Oreochromis niloticus. Aquaculture 119:259-264.
Ellis, A. E. 1990. Lysozyme Assays. Page 101-103 in J. S. Stolen, T. C. Fletcher, D. P. Anderson, B. S. Roberson, and W. B. Muiswinkel, editors. Techniques in Fish Immunology: Fish Immunology Technical Communication No. 1. SOS Publication, Fair Haven, USA.
Fraker, P. J., and S. M. Haas. 1977. Effect of zinc deficiency on the immune response of the young adult A/J mouse. Journal of Nutrition 107:1889-1895.
Gatlin III, D. M., and H. F. Phillips. 1989. Dietary calcium, phytate and zinc interactions in channel catfish. Aquaculture 79:259-266.
Gatlin III, D. M., and R. P. Wilson. 1983. Dietary zinc requirement of fingerling channel catfish. Journal of Nutrition 113:630-635.
Gatlin III, D. M., and R. P. Wilson. 1984. Zinc supplementation of practical channel catfish diets. Aquaculture 41:31-36.
Gatlin III, D. M., J. P. O'Connell, and J. Scarpa. 1991. Dietary zinc requirement of the red drum, Sciaenops ocellatus. Aquaculture 92:259-265.
Jeng, S. S., and L. T. Sun. 1981. Effects of dietary zinc levels on zinc concentrations in tissues of common carp. Journal of Nutrition 111:134-140.
Kanazawa, A. 1997. Effects of docosahexaenoic acid and phospholipids on stress tolerance of fish. Aquaculture 155:129-134.
Kidd, M. T., P. R. Ferket and M. A. Qureshi. 1996. Zinc metabolism with special reference to its role in immunity. World's Poultry Science Journal 52:309-324.
Ketola, H. G. 1979. Influence of dietary zinc on cataracts in rainbow trout (Salmo gairdneri). Journal of nutrition 109:965-969.
Knox, D., C. B. Cowey, and J. W. Adron. 1982. Effects of dietary copper and copper: zinc ratio on rainbow trout Salmo gairdneri. Aquaculture 27:111-119.
Knox, D., C. B. Cowey, and J. W. Adron. 1984. Effects of dietary zinc intake upon copper metabolism in rainbow trout (Salmo gairdneri). Aquaculture 40:199-207.
Keith, L. H., W. Crummett, J. Deegan, R. A. Taylor, and G. Wentler. 1983. Principles of environmental analysis. Analytical Chemistry 55:2210-2218.
Keith, L. H. 1991. Environmental Sampling and analysis - A practical guide. Lewis Publisher, Inc., Michigan, USA.
Lim, C., P. H. klesius, and P. L. Duncan. 1996. Immune response and resistance of channel catfish to Edwardsiella ictaluri challenge when fed various dietary levels of zinc methionine and zinc sulfate. Journal of Aquatic Animal Health 8:302-307.
Lim, C., W. M. Sealey, and P. H. Klesius. 1996. Iron methionine and iron sulfate as sources of dietary iron for channel catfish Ictalurus punctatus. Journal of the World Aquaculture Society 27:290-296.
Long, G. L., and J. D. Winefordner. 1983. Limit of detection - A closer look at the IUPAC definition. Analytical Chemistry 55:712-724.
Maage, A., and K. Julshamn. 1993. Assessment of zinc status in juvenile atlantic salmon (Salmo salar) by measurement of whole body and tissue levels of zinc. Aquaculture 117:179-191.
Matthews, E. S., J. E. Warinner, and B. A. Weeks. 1990. Assays of immune function in fish marcrophages. Pages 155-163. in J. S. Stolen, T. C. Fletcher, D. P. Anderson, B. S. Roberson, and W. B. Muiswinkel, editors. Techniques in Fish Immunology: Fish Immunology Technical Communication No. 1. SOS Publication, Fair Haven, USA.
Meng, H. L., and E. H. Robinson.1996. Comparison of chelated zinc and zinc sulfate as zinc sources for growth and bone mineralization of channel catfish (Ictalurus punctatus) fed practical diets. Aquaculture 1996:237-243.
Miller, N. W., and Clem, L. W. 1984. Temperature-mediated processes in teleost immunity:differential effects of temperature on catfish in vitro antibody responses to thymus-dependent and thymus-independent antigens. The Journal of Immunology 133:2356-2359.
Mocchegiani, E., M. Muzzioli, C. Cipriano, and R. Giacconi. 1998. Zinc, T-cell pathways, aging: role of metallothioneins. Mechanisms of Aging and Development 106:183-204.
Montgomery, D. W., M. Chvapil, and C. F. Zukoski. 1979. Effects of zinc Chlorid on guniea pig complement component activity in vitro: concentration-dependent inhibition and enhancement. Infection and Immunity 23:424-431.
Nematipour, G. R., M. L. Brown, and D. M. Gatlin III. 1992. Effects of dietary energy: protein ratio on growth characteristics and body composition of hybrid striped bass. Aquaculture 107:359-368.
Ogino, C., and G. Y. Yang. 1978. Requirement of rainbow trout for dietary zinc. Bulletin of Japanese Society of Scientific Fisheries 44:1015-1018.
Ogino, C., and G. Y. Yang. 1979. Requirement of carp for dietary zinc. Bulletin of Japanese Society of Scientific Fisheries 45:967-969.
Osati-ashtiani, F., L. E. King, and P. J. Fraker. 1998. Variance in the resistance of murine early bone marrow B cells to a deficiency in zinc. Immunology 94:94-100.
Overnell, J., T. C. Fletcher, and R. Mcintosh. 1988. The apparent lack of effect of supplementary dietary zinc on zinc metabolism and metallothionein concentrations in the turbot, Scophthalmus maximus (Linnaeus). Journal of Fish Biology 33:563-570.
Paripatananont, T., and R. T. Lovell. 1995a. Chelated zinc reduces the dietary zinc requirement of channel catfish, Ictalurus punctatus. Aquaculture 133:73-82.
Paripatananont, T., and R. T. Lovell 1995b. Responses of chanel catfish fed organic and inorganic sources of zinc to Edwardsiella ictaluri Challenge. Journal of Aquatic Animal Health 7:147-154.
Paripatananont T., and R. T. Lovell. 1997. Comparative net absorption of chelated and inorganic trace minerals in channel catfish Ictalurus punctatus diets. Journal of the World Aquaculture Society 28:62-67.
Porn-Ngam, N., S. Satoh, T. Takeuchi, and T. Watanabe. 1993. Effect of the ratio of phosphorus to calcium on zinc availability to rainbow trout in high phosphorus diet. Nippon Suisan Gakkaishi 59:2065-2070.
Robbins, K. R. 1986. A method, SAS program, and example for fitting the broken-line to growth data. The University of Tennessee Agriculture Experiment Station, Research Report 86-09.
Robbins, K. R., H. W. Northon, and D. H. Baker. 1979. Esstimation of nutrient requirement from growth data. Journal of Nutrition 109:1710-1714.
Rudneva, I. I. 1997. Blood antioxidant system of black sea elasmobranch and teleosts. Comparative Biochemistry and Physiology 118C:255-260.
Sakamoto, S., and Y. Yone. 1978. Requirement of red sea bream for dietary trace elements. Bulletin of the Japanese Society of Scientific Fisheries 44:1341-1344.
Satoh, S., R. Ishida, T. Takeuchi, T. Watanabe, and T. Seikai. 1998. Necessity of mineral supplement to fish meal based red sea bream feed. Suisanzoshoku 46:535-540.
Satoh, S., N. Porn-Ngam, T. Sasaki, R. Ishida, T. Takeuchi, and T. Watanbe. 1997. Effect of deboning of white fish meal on the zinc availability to rainbow trout. Suisanzoshoku 45:267-273.
Satoh, S., K. Tabata, K. Izume, T. Takeuchi, and T. Watanabe. 1987a. Effect of dietary tricalcium phosphate on availability of zinc to rainbow trout. Nippon Suisan Gakkaishi 53:1199-1205.
Satoh, S., T. Takeuchi, and T. Watanabe. 1987b. Availability to rainbow trout of zinc in white fish meal and of various zinc compounds. Nippon Suisan Gakkaishi 53:595-599.
Satoh, S., H. Yamamoto, T. Takeuchi, and T. Watanabe. 1983a. Effects on growth and mineral composition of rainbow trout of deletion of trace elements or magnesium from fish meal diet. Bulletin of the Japanese Society of Scientific Fisheries 49:425-429.
Satoh, S., H. Yamamoto, T. Takeuchi, and T. Watanabe. 1983b. Effects on growth and mineral composition of carp of deletion of trace elements or magnesium from fish meal diet. Bulletin of the Japanese Society of Scientific Fisheries 49:431-435.
Scarpa, J., and D. M. Gatlin III. 1992. Effects of dietary zinc and calcium on select immune functions of channel catfish. Journal of Aquatic Animal Health 4:24-31.
Settlemire, C. T., and G. Malrone. 1967. In vivo effect of zinc on iron turnover in rats and life span of the erythrocyte. Journal of nutrition 92:159-164.
Shankar, A. H., and A. S. Prasad. 1998. Zinc and immune function: the biological basis of altered resistance to infection. American Journal of Clinical Nutrition. 68:447S-463S.
Shi, H. N., M. E. Scott, M. M. Stevenson, and K. G. Koski. 1994. Zinc deficiency impairs T cell function in mice with primary infection of Heligmosomoides polygyrus (Nematoda). Parasite Immunology 16:339-350.
Shi, H. N., M. E. Scott, M. M. Stevenson, and K. G. Koski. 1998. Energy restriction and deficiency impair the functions of murine T Cells and Antigen-Presenting Cells during Gastrointestinal Nematode infection. Journal of Nutrition 128:20-27.
Shiau, S. Y., and C. W. Lan. 1996. Optimum dietary protein level and protein to energy ratio for growth of grouper (Epinephelus malabaricus). Aquaculture 145:259-266.
Spinelli, J., C. R. Houle, and Y. C. Wekell. 1983. The effect of phytates on the growth of rainbow trout (Salmo gairdneri) fed purified diets containing varying quantities of calcium and magnesium. Aquaculture 30:71-83.
Spry, D. J., P. V. Hodson, and C. M. Wood. 1988. Relative contributions of dietary and waterborne zinc in the rainbow trout, Salmo gairdneri. Canadian Journal of Fisheries and Aquatic Sciences 45:32-41.
Sunyer, J. O. and L. Tort. 1995. Natural hemolytic and bactericidal activities of sea bream Sparus aurata serum are effected by the alternative complement pathway. Veterinary Immunology and Immunopathology 45:333-345.
Teng, S. K. 1978. Preliminary observation on the dietary protein requirement of estuary grouper, Epinephelus salmonides, cultured in floating net cages. Aquaculture 15:257-271.
Torres, P., L. Tort, J. Planas, and R. Flos. 1986. Effects of confinement stress and additional zinc treatment of some blood parameters in the dogfish Scyliorhinus canicula. Comparative Biochemistry and Physiology 83C:89-92.
Tort., L., E. Gomez, D. Montro and J. O. Sunyer. 1996. Serum haemolytic and agglutinating activity as indicators of fish immunocompetence: their suitability in stress and dietary studies. Aquaculture International 4:31-41.
Wapnir, R. A. 1990. Protein nutrition and mineral absorption. CRC Press, Inc., Florida, USA.
Watanabe, T., V. Kiron, and S. Satoh. 1997. Trace minerals in fish nutrition. Aquaculture 151:185-207.
William, S. 1984. Official methods of analysis of the Association of Official Analytical Chemists. (AOAC).
Willis, J. N., and W. G. Sunda. 1984. Relative contributions of food and water in the accumulation of zinc by two species of marine fish. Marine Biology 80:273-279.
Wirth,. J. J., P. J. Fraker, and F. Kierszenbaum. 1984. Changes in the levels of marker expression by mononuclear phagocytes in zinc-deficient mice. Journal of Nutrition 114:1826-1833.
Wirth,. J. J., P. J. Fraker, and F. Kierszenbaum. 1989. Zinc requirement for macrophage function: effect of zinc deficiency on uptake and killing of a protozoan parasite. Immunology 68:114-119.
Yamamoto, H., S. Satoh, T. Takeuchi, and T. Watanabe. 1983. Effects on rainbow trout of deletion of manganese or trace elements from fish meal diet. Nippon Suisan Gakkaishi 49:287-293.
Yamamoto, K. and M. Takahashi. 1975. Inhibition of terminal stage of complement mediated lysis (reactive lysis) by zinc and copper ion. International Archives of Allergy and Applied Immunology 48:653-663.
Yano, T. 1996. The nonspecific immune system: humoral defenses. Page105-157 in G. Iwama, and T. Nakanishi, editors. The Fish Immune System. Organism, Pathogen, and Environment. Academic Press, San Diego, California, USA.

電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:校內校外完全公開 unrestricted
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus: 已公開 available


紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code