Responsive image
博碩士論文 etd-0628102-172036 詳細資訊
Title page for etd-0628102-172036
論文名稱
Title
電力用戶負載歸類及整合
Customer Load Profiling and Aggregation
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
90
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2002-06-07
繳交日期
Date of Submission
2002-06-28
關鍵字
Keywords
零售市場、負載因數、模糊集群、負載曲線、饋線重組、粒子群最佳化、模糊集、變壓器管理、類神經網路、網路分析
Retail Market, Load Profile, Load Factor, Fuzzy Sets, Transformer Management, Network Analysis, Particle Swarm Optimization, Fuzzy Clustering, Artificial Neural Network, Feeder Reconfiguration.
統計
Statistics
本論文已被瀏覽 5710 次,被下載 5011
The thesis/dissertation has been browsed 5710 times, has been downloaded 5011 times.
中文摘要
電力工業重構,創造了用戶減少電費的許多機會。在競爭的電力市場中,為了建立用戶的零售選擇權,必須了解不同用戶類別負載曲線的資訊。以目前來說,低壓用戶為了選擇電力供應者而裝設智慧型電錶量測每一小時負載是不切實際的。為了使電力經營者可以容易將用戶歸類到特定的用戶類別的負載曲線並付與確定指數,如何依據用戶負載調查資料和每月用電量,針對用戶所歸類的類別做初步的辨別是市場運作所必須的。
配電系統饋線供電給不同類別的用戶,由於欠缺配電變壓器負載實測資料,用來作為系統分析的資料具有不同程度的不確定性。在目前許多的研究中,模糊負載模型曾被用來表示需量的不確定性,然而許多先前的研究並沒有說明如何推導模糊負載模型。為解決這個問題,提出如何建立模糊負載模型是許多配電網路分析所需要的。
在自由化的市場中,負載整合允許用戶以較低的電價購電。在一些購買合約中,負載因數是負載整合中具有關鍵性的因素。在配電系統中,為建立較佳的負載整合以獲得有利的議價機會,饋線重組可以被用來改善配電子系統的負載因數。
針對上述三個問題,在本論文應用二種資料挖掘的方法,也就是利用模糊 c 平均法(fuzzy c-means)和類神經網路(Artificial Neural Network)做為負載模式辨別的基礎,來進行用戶負載曲線的建立和用戶類別的指派。不同於以前的用戶負載曲線建立技術,我們利用可能性與隨機性之一致性原理(possibility–probability consistency principle),利用負載調查得到用戶每小時負載的機率密度分佈並將其轉換成模糊歸屬函數。其次利用用戶類別模糊負載曲線模型、用戶每月用電量和饋線負載量測值,饋線上各節點變壓器每小時之負載可以被估計並利用在配電網路分析之上。最後我們依據二進位粒子群最佳化(binary particle swarm optimization)技術,利用饋線重組以改善饋線的負載因數,以獲得最佳的電費議價空間。依據在幾個簡單的配電網路上之測試結果得知,二進位粒子群最佳化法可以有效地求解饋線重組的問題。


Abstract
Power industry restructuring has created many opportunities for customers to reduce their electricity bills. In order to facilitate the retail choice in a competitive power market, the knowledge of hourly load shape by customer class is necessary. Requiring a meter as a prerequisite for lower voltage customers to choose a power supplier is not considered practical at the present time. In order to be used by Energy Service Provider (ESP) to assign customers to specific load profiles with certainty factors, a technique which bases on load research and customers’ monthly energy usage data for a preliminary screening of customer load profiles is required.
Distribution systems supply electricity to different mixtures of customers, due to lack of field measurements, load point data used in distribution network studies have various degrees of uncertainties. In order to take the expected uncertainties in the demand into account, many previous methods have used fuzzy load models in their studies. However, the issue of deriving these models has not been discussed. To address this issue, an approach for building these fuzzy load models is needed.
Load aggregation allows customers to purchase electricity at a lower price. In some contracts, load factor is considered as one critical aspect of aggregation. To facilitate a better load aggregation in distribution networks, feeder reconfiguration could be used to improve the load factor in a distribution subsystem.
To solve the aforementioned problems, two data mining techniques, namely, the fuzzy c-means (FCM) method and an Artificial Neural Network (ANN) based pattern recognition technique, are proposed for load profiling and customer class assignment. A variant to the previous load profiling technique, customer hourly load distributions obtained from load research can be converted to fuzzy membership functions based on a possibility–probability consistency principle. With the customer class fuzzy load profiles, customer monthly power consumption and feeder load measurements, hourly loads of each distribution transformer on the feeder can be estimated and used in distribution network analysis. After feeder models are established, feeder reconfiguration based on binary particle swarm optimization (BPSO) technique is used to improve feeder load factors. Test results based on several simple sample networks have shown that the proposed feeder reconfiguration method could improve customers’ position for a good bargain in electricity service.


目次 Table of Contents
中文摘要..………….…………………………………………………...……I
英文摘要……...………………………………………….………………...III
目錄 ……………….………………………………………..………...……V
圖目錄 ……………….………………………...…………………...……VII
表目錄 ……………….…………….………………………………...……IX
第一章 緒論………………….…………………………….………………1
1-1 研究背景與目標…………………...……………..……..………1
1-2 文獻回顧………….……………….…………...………………14
1-3 研究內容…….………………………………………….…...…18
1-4 主要成果………………….…………...………...……………..19
1-5 論文結構說明………………………………...…...………...…20
第二章 低壓用戶負載曲線之辨別.…………...…………..…………..…21
2-1 簡介……………………….…………...…………..……………..21
2-2 簡單負載曲線之建立..….…………...…………..………………23
2-3 用戶負載曲線集群分析-模糊c平均法(Fuzzy c-means)…….25
2-4 以類神經網路為基礎之低壓用戶歸類………..…………..……28
2-5 本章結論……..………….…………...…………..………………32
第三章 配電變壓器負載估計...…………..……...………………………34
3-1 簡介……………………….…………...…………..……………..34
3-2 負載調查程序..………….…………...…………..………………35
3-3 變壓器負載模式之建立………...………………….……………38
3-3-1 建立各用戶類別負載曲線之歸屬函數………….………39
3-3-2 配電變壓器負載分配…………………………………….44
3-4 本章結論……..………….…………...…………..………………47
第四章 應用饋線重組改善饋線負載因數……………...……………….49
4-1 簡介……………………….…………...…………..……………..49
4-2 問題描述…………………………………………...…...……..…49
4-3 以粒子群最佳化為基礎之求解程序………...………………….51
4-4 本章結論……..………….…………...…………..………………55
第五章 測試結果……………………………………………...………….56
5-1 用戶集群分析和歸類測試………………………....….…..…57
5-2 配電變壓器負載模型之建立與測試……………………………68
5-2-1 模糊負載潮流之應用……..………………...…………....74
5-3 饋線重組改善負載因數之測試………………...……………….75
5-4 本章結論……..………….…………...…………..………………80
第六章 結論及未來研究方向………..……….………..………...………82
6-1 結論………......………………………………………………..…82
6-2 未來研究方向……………………………………………………83
參考文獻…...………......………………………………………………..…84
參考文獻 References
1. 徐守正,”英國新電力交易制度初期實施成效及市場後續發展說明”, 能源季刊第三十二卷第一期,2002年1月。
2. 李清榮,” 各國電業自由化之市場競爭機制評析”,能源季刊第三十一卷第一期,2001年1月。
3. D. W. Sapte, The new electricity trading arrangements, Energy Law, Spring 2000.
4. 王京明,”紐西蘭電力交易規範探討”, 能源季刊第三十卷第四期,2000年1月。
5. 許志義,”台灣電價之探討”, 經濟情勢暨評論月刊第五卷第一期,1999年6月。
6. 林唐裕、吳再益,”從歐美電業發展趨勢探討我國電力自由化方向” ,經濟情勢暨評論月刊第四卷第三期,1998年11月。
7. 許志義,”電力市場開放民營後之相關問題與對策”, 經濟情勢暨評論月刊第一卷第三期,1995年11月。
8. M. Crooks, Risk Factors in Power Contracts, Financial Engineering Ltd, 1999.
9. Generic Technical Implementation Working Group Report on, “Load profiling for implementing retail choice in Maryland,” Maryland Public Service Commission, June 30, 1999.
10. http://www.electricity.org.uk/uk_inds/load2pro.html, “Load profiles in the 1998 electricity supply market,”.
11. S. V. Allera, A. G. Horsburgh, “Load profiling for energy trading and settlements in the UK electricity markets,” DistribuTECH Europe DA/DSM Conf. 27-29, London, October 1998.
12. H. L. Willis, Spatial Electric Load Forecasting, Marcel Dekker, Inc., 1996.
13. C. S. Chen, J. C. Hwang, Y. M. Tzeng, C. W. Huang, and M. Y. Cho, “Determination of customer load characteristics by load survey system at Taipower,” IEEE Trans. on Power Delivery, Vol. 11, pp. 1430-1435, 1996.
14. C. S. Chen, J. C. Huang and C. W. Huang, “Application of load survey system to proper tariff design,” IEEE Trans. on Power Systems, vol. 12, no. 4, pp.1746-1751, Nov. 1997.
15. R. F. Chang, R. C. Leou and C. N. Lu, “Distribution transformer load modeling using load research data,” IEEE Trans. on Power Delivery, vol. 17, no. 2, pp. 655-661, 2002.
16. Load research committee, Load Research Manual, Association of Edison Illuminating Companies, 1990.
17. J. C. Bezdek, et al., Pattern Recognition with Fuzzy Objective Function Algorithms, Plenum Press, New York, 1981.
18. R. J. Hathaway, J. C. Bezdek, J. W. Davenport, ”On relational data versions of c-means algorithms,” Pattern Recognition Letters 17, pp. 607-612, 1996.
19. H. Frank, Fuzzy cluster analysis: methods for classification, data analysis, and image recognition, John Wiley, New York, 1999.
20. M. T. Hagan, H. B. Demuth, M. H. Beale, Neural Network Design, Boston, MA: PWS Publishing, 1996.
21. I.T., Jolliffe, Principal Component Analysis, New York: Springer-Verlag, 1986.
22. 陳順宇,”多變量分析”,華泰書局,1998年7月。
23. 儲全滋,”抽樣方法”,三民書局,1996年2月。
24. J. A. Jardini, C. M. V. Tahan, S. U. Ahn, E. L. Ferrari, “Distribution transformer loading evaluation based on load profiles measurements,” IEEE Trans. on Power Delivery, vol. 12, no. 4, pp. 1766 -1770, Oct. 1997.
25. J. J. Grainger, S. H. Lee, "Optimum size and location of shunt capacitors for reduction of losses on distribution feeder," IEEE Trans. on Power Apparatus and Systems, Vol. PAS-100, No. 3, pp. 1105-1118, March 1981.
26. J. J. Grainger, S. H. Lee and A. A. El-Kib, "Design of a real-time switching control scheme for capacitive compensation of distribution feeders," IEEE Trans. on Power Apparatus and Systems, Vol. PAS-101, No. 8, pp. 2420-2428, Aug. 1982.
27. J. J. Grainger, S.Civanlar, S. H. Lee, "Optimum design and control scheme for continuous capacitive compensation of distribution feeders," IEEE Trans. on Power Apparatus and Systems, Vol. PAS-102, No. 10., pp. 3271-3278, Oct. 1983.
28. T. H. Chen, M. S. Chen, K. J. Hwang, P. Katas, and E. A. Chebi, "Distribution system power flow analysis - a rigid approach," IEEE Trans. on Power Delivery, Vol. 6, No. 3, pp. 1146-1152, July 1991.
29. Y. C. Lee and M. Etezadi-Amoli, “An improved modeling technique for distribution feeders with incomplete information,” IEEE Trans. on Power Delivery, vol. 8, no. 4, pp.1966-1972, Oct. 1993.
30. H. Kuo and Y. Hsu, “Distribution system load estimation and service restoration using a fuzzy set approach,” IEEE Trans. on Power Delivery, vol. 8, no. 4, pp.1950-1957, Oct. 1993.
31. A. K. Ghosh, D. L. Lubkerman, and R. H. Jones, “Load modeling of distribution circuit state estimation,” IEEE Trans. on Power Delivery, vol. 12, no.2, pp. 999-1005, April 1997.
32. A. Seppala, “Statistical distribution of customer load profiles,” Proc. of EMPD '95, vol. 2, pp. 696-701, 1995.
33. K. Kauhaniemi, “Fuzzy models and techniques for the calculation of radial distribution networks,” Proc. of IEEE/NYUA Athens Power Tech Conference, pp.423-428, Sept. 5-8, 1993.
34. V. Miranda, J. Pereira, J. T. Saraiva, “Load allocation in DMS with a fuzzy state estimation,” IEEE Trans. on Power Systems, vol. 15, no. 2, pp. 529-534, May 2000.
35. K. Kauhaniemi, “Fuzzy models and techniques for the calculation of radial distribution networks,” IEEE/NTUA Athens Power Tech. Conference, vol. 1, pp. 423 –428, 1993.
36. R. C. Leou and C. N. Lu, “Improving feeder voltage calculation results with telemetered data,” IEEE Trans. on Power Delivery, vol. 11, no. 4, pp.1914-1920, Oct. 1996.
37. A. Kaufmann and M. M. Gupta, Introduction to fuzzy arithmetic: theory and applications, Van Nostrand Reinhold, New York, 1985.
38. M. R. Civanlar, and H. J. Trussell, “Constructing membership functions using statistical data,” Fuzzy Sets and Systems, vol. 18, pp. 1-13, 1986.
39. D. E. Goldberg, Genetic Algorithms in Search, Optimization, and Machine Learning, Reading MA: Addison-Welsey, 1989.
40. J. R. Koza, Genetic Programming: On the Programming of Computers by Means of Natural Selection, MIT Press, Cambridge, MA, 1992.
41. T. Y. Chen, and C. J. Chen, “Improvements of simple genetic algorithm in structural design,” International Journal for Numerical Methods in Engineering, Vol. 40, pp. 1323-1334, 1997.
42. M. Gen, and R. Cheng, Genetic Algorithms and Engineer Design, John Wiley & Sons, 1997.
43. L. J. Fogel, Evolutionary Programming in Perspective: the Top-down View, in Computational Intelligence: Imitating Life, J.M. Zurada, R. J. Marks II, and C. J. Robinson, Eds., IEEE Press, Piscataway, NJ, 1994.
44. D. B. Fogel, "An Introduction to Simulated Evolutionary Optimization," IEEE Trans. on Neural Networks, Vol. 5, No. 1, pp. 3-14, Jan. 1994.
45. D. B. Fogel, System Identification Through Simulated Evolution : A Machine Learning Approach to Modeling, Ginn Press, Needham, MA, 1991.
46. D. B. Fogel, "Using Evolutionary Programming for Modeling:An Ocean Acoustic Example," IEEE Journal of Oceanic Engineering, Vol. 17, No. 4, pp. 333-340, Oct. 1992.
47. R. V. Petniunas, “Efficient load aggregation: preparing for the least cost electricity purchase,” Proc. of ’99 Distributech, San Diego, CA, 1999.
48. S. Civanlar, J. J. Grainger, H. Yin and S. S. H. Lee, “Distribution feeder reconfiguration for loss reduction,” IEEE Trans. on Power Delivery, vol. 3, no. 3, pp. 1217-1223, July 1988.
49. M. E. Baran and F. F. Wu, “Network reconfiguration in distribution systems for loss reduction and load balancing,” IEEE Trans. on Power Delivery, vol. 4, no. 2, pp. 1401-1407, Apr. 1989.
50. Y. H. Song, G. S. Wang, A. T. Johns and P. Y. Wang, “Distribution network reconfiguration for loss reduction using fuzzy controlled evolutionary programming,” IEE Proc.–Gener. Transm. Distrib., vol. 144, no. 4, pp. 345-350, Jul. 1997.
51. Z. Qin, D. Shirmohammadi and W. H. E. Liu,” Distribution feeder reconfiguration for service restoration and load balancing,” IEEE Transactions on Power Systems, vol. 12, no. 2, pp. 724 –729, 1997.
52. Y. Y. Hsu, J. H. Yi, S. S. Liu, Y. W. Chen, H. C. Feng and Y. M. Lee,” Transformer and feeder load balancing using a heuristic search approach” IEEE Transactions on Power Systems, vol. 8, no. 1, pp. 184 –190, 1993.
53. Z. Qin, D. Shirmohammadi and W. H. E. Liu,” Distribution feeder reconfiguration for operation cost reduction,” IEEE Transactions on Power Systems, vol. 12, no. 2, pp. 730 –735, 1997.
54. I. Roytelman, V. Melnik, S. S. H. Lee and R. L. Lugtu,” Multi-objective feeder reconfiguration by distribution management system,” IEEE Transactions on Power Systems, vol. 11, no. 2, pp. 661 –667, 1996.
55. J. Kennedy and R. Eberhart, “Particle swarm optimization,” in Proc. of IEEE International Conference on Neural Networks, vol. IV, Perth, Australia, pp. 1942-1948, 1995.
56. Y. Shi and R. Eberhart, “A modified particle swarm optimizer,” in Proc. of IEEE International Conference on Evolutionary Computation, Anchorage, pp. 69-73, May 1998.
57. Y. Shi and R. Eberhart, “Empirical study of particle swarm optimization,” in Proc. of IEEE International Conference on Evolutionary Computation, Anchorage, pp. 1945-1950, May 1999.
58. P. J. Angeline, “Using selection to improve particle swarm optimization,” in Proc. of IEEE International Conference on Evolutionary Computation, Anchorage, Alaska, pp.84-89, 1998.
59. J. Kennedy, R. C. Eberhart, “A discrete binary version of the particle swarm algorithm,” in Proc. of IEEE International Conference on Systems, Man, and Cybernetics, vol. 5, pp. 4104-4108, 1997.
60. H. Yoshida, K. Kawata, Y. Fukuyama, S. Takayama, Y. Nakanishi, “A particle swarm optimization for reactive power and voltage control considering voltage security assessment,” IEEE Trans. on Power Systems, vol. 15, no. 4, pp. 1232-1239, Nov. 2000.
61. S. Naka, T. Genji, T. Yura, Y. Fukuyama,” Practical distribution state estimation using hybrid particle swarm optimization,” 2001 IEEE Power Engineering Society Winter Meeting, vol. 2 , pp. 815-820 , 2001.
62. M. A. Abido, “Particle swarm optimization for multimachine power system stabilizer design,” 2001 IEEE Power Engineering Society Summer Meeting, Vol. 3 ,pp. 1346 –1351, 2001
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:校內立即公開,校外一年後公開 off campus withheld
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus: 已公開 available


紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code