Responsive image
博碩士論文 etd-0628105-141347 詳細資訊
Title page for etd-0628105-141347
論文名稱
Title
InAlAs/InGaAlAs非對稱針狀位能勢量子井結構設計與應用至電致吸收光調變器之研製
Unsymmetry Spiked-Quantum Well Design and Electroabsorption Modulators Based on the InAlAs/InGaAlAs Material System
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
76
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2005-06-18
繳交日期
Date of Submission
2005-06-28
關鍵字
Keywords
電致吸收光調變器、非對稱針狀位能勢量子井
Unsymmetry Spiked-Quantum Well, InAlAs/InGaAlAs, Electroabsorption Modulators
統計
Statistics
本論文已被瀏覽 5677 次,被下載 0
The thesis/dissertation has been browsed 5677 times, has been downloaded 0 times.
中文摘要
多層量子井結構之量子侷限史塔克效應已被廣泛應用於製作電致吸收光調變器;InGaAs / InGaAlAs材料因其高能帶補償比(導電帶對價電帶)與強烈激子(電子電洞對)共振效應,為製造1.55μm通訊波長光調變器之絕佳材料。
論文中,架構量子井吸收係數計算模型並應用於設計電致吸收光調變器主動層結構;插入非對稱針狀位能勢於寬量子井中,使其保有高波長變化率,同時降低波函數重疊積分對偏壓之敏度感,來得到優異的光調變效率;此外,並調配四元材料組合參數(~-0.4% 伸張形變),使元件具備極化不敏感之特性。
本文亦製作出InGaAs / InGaAlAs材料之行波式電致吸收光調變器。量測元件特性,不同模態光傳輸係數差約2~5 dB;1V驅動電壓下消光比達15 dB;於高速電光頻率響應上,業已量測出有超過20GHz之頻寬。
Abstract
Multiple-quantum-well (M.Q.W.) and quantum-confined-stark-effect (Q.C.S.E.) have been widely used in designing and fabricating electroabsorption modulators. In this paper, material InAlAs/InGaAlAs near 1500nm transition is used to be our target for designing and fabricating EAM due to its high band-offset ratio (electron to hole) and the strong exciton effect.
A calculation model for quantum well absorption has been developed to design EAM active region. Asymmetrically inserting a thin-spiked potential barrier into wide Q.W. structure, the Q.W. can have high efficiency of Q.C.S.E. without lowing the electron-hole wave function overlap integral, causing high electroabsorption coefficient and optical modulation. Tuning material composition (~-0.4% tensile strain ) is also used for polarization independence characteristics.
Traveling-wave EAM based on InAlAs / InGaAlAs material system is also fabricated and measured. Polarization independence 2~5 dB operation, low voltage swing of 1V for 15 dB extinction ratio, high-speed electrical-to-optical response with –3dB bandwidth of >20GHz at 50Ω termination have been achieved showing high potential in broad band fiber optical communication.
目次 Table of Contents
目錄

第一章 序論 ……………………………………………………………1
1.1 前言…………………………………………………………………1
1.2 研究動機……………………………………………………………1
1.3 論文架構……………………………………………………………3
第二章 理論 ……………………………………………………………4
2.1 光電半導體…………………………………………………………4
2.2 吸收係數……………………………………………………………5
2.3 晶格形變材料之量子井定義 ……………………………………10
2.4 量子侷限史塔克效應(Q.C.S.E.) ……………………………16
2.5 電子波函數溢漏 …………………………………………………19
2.6 結論 ………………………………………………………………23
第三章 光波導材料結構設計…………………………………………24
3.1 量子井基態能階與波函數計算 …………………………………24
3.2 電致吸收光調變器光傳輸係數 …………………………………29
3.3 電致吸收光調變器量子井設計目標 ……………………………31
3.4 極化不敏感 ………………………………………………………32
3.5 非對稱針狀位能勢量子井 ………………………………………37
3.6 電致吸收光調變器材料結構 ……………………………………44
3.7 結論 ………………………………………………………………46
第四章 行波式電致吸收光調變之製作………………………………47
4.1 行波式電致吸收光調變之概述 …………………………………47
4.2 元件製程 …………………………………………………………48
4.3 結論 ………………………………………………………………60
第五章 元件特性量測…………………………………………………61
5.1 金半接觸電阻 ……………………………………………………61
5.2 微波訊號S參數 …………………………………………………63
5.3 光波導傳輸係數 …………………………………………………65
5.4 電-光頻率響應……………………………………………………66
5.5 相關製程討論 ……………………………………………………67
第六章 結論……………………………………………………………69

參考文獻 ………………………………………………………………70
參考文獻 References
[1] S. L. Chuang, “Physics of Optoelectronic Devices,” John Wiley & Sons, Inc, 1995.
[2] J. Minch, S. H. Park, T. Keating, and S. L. Chuang, “Theory and Experiment of In1-xGaxAsyP1-y and In1-x-yGaxAlyAs Long-Wavelength Strained Quantum-Well Lasers,” IEEE Journal of Quantum Electronics, Vol.35, No.5, May 1999.
[3] E.Herbert Li, “Material parameters of InGaAsP and InAlGaAs systems for use in quantum well structures at low and room temperatures,” Physica E: Low-dimensional Systems and Nanostructures, Volume 5, Issue 4, 1 March 2000, Pages 215-273
[4] W. Franz, Z. Naturforsch., Vol.13, pp. 484, 1958
[5] L. V. Keldysh, Zh. Eksp. Sov. Phys., Vol. JETP7, pp. 788, 1953
[6] D. A. B. Miller, D. S. Chemla, T. C. Damen, A. C. Gossard, W. Wiegmann, T. H. Wood, C. A. Burrus, “Band-Edge Electroabsorption in Quantum Well Structure: The Quantum-Confined Stark Effect,” Phys. Rev. Lett. 53, 2173, 1984
[7] Tatsuroh Ikeda and Hiroshi Ishikawa “Analysis of the Attenuation Ratio of MQW Optical Intensity Modulator for 1.55μm Wavelength Taking Account of Electron Wave Function Leakage,” IEEE Journal of Quantum Electronics, Vol.32, No.2, 1996
[8] H. Kroemer, “Quantum Mechanics: For Engineering, Materials Science, and Applied Physics, ” Prentice Hall, 1994
[9] Kaoru Yoshino, Tatsuya Takeshita, Isamu Kotaka, Susumu Kondo, Yoshio Noguchi, Ryuzo Iga and Koichi Wakita, “Compact and Stable Electroabsorption Optical Modulator Modules,” Journal of Lightwave Technology, Vol.17, Issue 9, 1700-September 1999
[10] F. Devaux, J. C. Harmand, I. F. L. Dias, T. Giettler, O. Krebs and P. Voisin, “High Power Saturation, Polarization Insensitive Electroabsorption Modulator with Spiked Shallow Wells,” Electronics Letters, Vol.33, No.2, 1997
[11] Shengzhong Zhang, “Traveling-wave Electroabsorption Modulators,” University of California, Santa Barbara, CA, Ph.D. Dissertation, 1999
[12] 李典融, “Fabrication of InGaAsP/InGaAsP Electroabsorption Modulator by Wet Etching,” National Sun Yat-sen University, Institute of Electro-Optical Engineering, 2003
[13] 李錦堂, “Quantum Well Design and Electroabsorption Modulators Fabrication Based on the InGaAs/InAlAs material system,” National Sun Yat-sen University, Institute of Electro-Optical Engineering, 2003
[14] G. L. Li, C. K. Sun, S. A. Pappert, W. X. Chen and P. K. L. Yu, “Ultrahigh-Speed Traveling-Wave Electroabsorption Modulator—Design and Analysis,” IEEE Trans. Microwave Theory Technol., Vol.47, pp.1177–1183, 1999
[15] 顏邦仁, “High Speed Measurement of Traveling-Wave Electroabsorption Modulator,” National Sun Yat-sen University, Institute of Electro-Optical Engineering, 2003
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:校內校外均不公開 not available
開放時間 Available:
校內 Campus:永不公開 not available
校外 Off-campus:永不公開 not available

您的 IP(校外) 位址是 18.119.123.32
論文開放下載的時間是 校外不公開

Your IP address is 18.119.123.32
This thesis will be available to you on Indicate off-campus access is not available.

紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code