Responsive image
博碩士論文 etd-0628106-160510 詳細資訊
Title page for etd-0628106-160510
論文名稱
Title
靜電放電現象之理論分析與量測
Theoretical Analysis and Measurement for ESD Phenomenon
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
103
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2006-06-26
繳交日期
Date of Submission
2006-06-28
關鍵字
Keywords
靜電放電、空氣放電、電弧放電、電磁干擾、時域有限差分
Finite-Difference Time-Domain, Arc discharge, EMI, Air discharge, ESD
統計
Statistics
本論文已被瀏覽 5667 次,被下載 0
The thesis/dissertation has been browsed 5667 times, has been downloaded 0 times.
中文摘要
隨著電子元件朝高速、省電和小體積的需求,高速數位系統之雜訊容忍度相對的減小很多。而在人造合成材料之大量生產下,人體愈來愈容易因摩擦而帶電產生對電子元件的空氣放電,在周圍環境靜電問題與日俱增但元件對靜電放電之防護力卻越來越差的情形下,使得靜電放電問題對於電子產品之影響愈加嚴重。
本論文先介紹真實生活中人帶電所引發的空氣放電機制,接著提供靜電放電的量測方法致力於提升實驗的再現性讓結果精確可靠,最後嘗試用時域有限差分法模擬空氣放電與接觸放電,以提供在量測上的簡單驗證。
Abstract
The trends of present design in electronic systems are towards high speed, small size, and lower voltage levels. The noise immunity of high speed digital circuit decreases. ESD problem becomes more and more important for electric products because of the triboelectricity caused by human body with synthetic material.

In this thesis we introduce the phenomenon in real life ESD caused by a charged human body source. Then we provide a good measurement method of ESD which enhances the repetition that gives a reliable and accurate result. Finally we try to build the numerical model for the air and contact discharge simulation by FDTD to provide a good measurement validation.
目次 Table of Contents
第一章 序論 1
1.1 研究目的 1
1.2 論文大綱 2
第二章 靜電放電之簡介與規範 3
 2.1 靜電放電簡介 3
   2.1.1 何為靜電 3
   2.1.2 靜電的基本觀念 3
   2.1.3 靜電放電的影響及一般防治概念 8
 2.2 靜電放電模型介紹 10
   2.2.1 靜電放電模型與規範簡介 10
   2.2.2 IEC 61000-4-2 靜電槍簡單模型 11
  2.2.3 靜電槍放電波形之驗證 12
   2.2.4 靜電放電測試方法 15
第三章 靜電放電之量測方法 19
 3.1 量測設備需求及配置 19
   3.1.1 挑選數位示波器 19
   3.1.2 數位示波器與靜電槍量測前的驗證 20
 3.2 靜電槍開關充放電的電磁場預先干擾 22
 3.3 高壓產生器的電磁輻射 23
 3.4 電磁輻射源進入的可能路徑 25
 3.5 不同靜電槍的特性比較 28
 3.6 共模電流與磁性扼流環之影響 30
 3.7 以電波暗室隔絕全部雜訊干擾源 31
 3.8 結論 33
第四章 靜電槍空氣帶電模式放電的波形探討與量測方法 34
 4.1 空氣放電簡介 34
   4.1.1 空氣放電生成原因 34
   4.1.2 空氣離子化電子的傳遞過程 35
   4.1.3 空氣放電的陰極過程 37
   4.1.4 湯森放電(Townsend’s sparking criterion) 39
   4.1.5 流注理論(Streamer theory) 41
   4.1.6 帕森定律(Paschen’s law) 42
   4.1.7 氣體放電的型態 44
   4.1.8 時間延遲 44
   4.1.9 影響空氣放電的變因總結 46
 4.2 靜電槍固定距離對待測物空氣放電 46
   4.2.1 實驗設置 46
   4.2.2 實驗環境條件 48
   4.2.3 電弧長度與電壓關係 48
   4.2.4 電弧長度與放電波型關係 48
   4.2.5 結論與探討 53
 4.3 靜電槍帶電接近物體空氣放電 55
   4.3.1 實驗設置 55
   4.3.2 實驗環境條件 56
   4.3.3 帶電電壓對放電波型的影響 56
   4.3.4 結論與探討 58
 4.4 空氣放電鄰近耦合 59
   4.4.1 空氣放電在受屏蔽之平行耦合傳輸線上 59
   4.4.2 空氣放電在沒有金屬屏蔽之平行耦合傳輸線上 61
 4.5 比較接觸放電與空氣放電 62
   4.5.1 接觸放電與空氣放電波形差異 62
   4.5.2 由能量與電荷探討接觸放電與空氣放電差異 63
第五章 靜電放電之數值分析方法 66
 5.1 簡介 66
 5.2 SPICE模型 66
 5.3 Maxwell方程式以及FDTD離散化公式 69
   5.3.1 穩定準則 73
   5.3.2 吸收邊界 73
 5.4 FDTD集總元件法 76
   5.4.1 電阻 77
   5.4.2 電容 77
   5.4.3 電感 78
   5.4.4 阻抗性電壓源 78
 5.5 FDTD模擬靜電放電之結果 79
   5.5.1 接觸放電模擬 79
   5.5.2 空氣放電模擬 86
第六章 結論 90
參考文獻 References
[1] J. G. Yook, V. Chandramouli, L. P. B. Katehi, K. A. Sakallah, T. R. Arabi and T. A. Schreyer, “Computation of switching noise in printed circuit boards,” IEEE Trans. Comp., Packag., and Manufact., vol. 20, pp. 64-75, Mar. 1997.
[2] W.T.Rhoades, “Avoidance of ESD effects,” IEEE Int. Symp. Electromagn. Compat., 1988, pp. 184-189.
[3] Liu Shanghe, Tan Zhiliang, Xu Xiaoying, Wei Guanghui and Wu Zhangcheng, “Study on ESD characteristics and its effect mechanism,” IEEE 2002 3rd Int. Symp. Electromagn. Compat., May. 2002, pp. 493-496.
[4] N. Mohan and A. Kumar, “Modeling ESD protection,” IEEE Potentials, Vol. 24, Feb.-Mar. 2005, pp.21-24
[5] B. Jeppesen and C. Bussmann,“Electrostatic discharge specifications and protection methods,” IEEE Northcon/98 Conf. Proceedings, Oct. 1998, pp. 134-137.
[6] R. Paul Clayton, “Introduction to electromagnetic compatibility,” John Wiley & Sons Inc., 1992, chapter 12.
[7] J.S. Maas and D.J. Pratt, “A study of the repeatability of electrostatic discharge simulators,” IEEE International Conference on EMC, pp. 265-269, 1990.
[8] R. K. Keenan and L. A. Rosi, “Some Fundamental Aspects of ESD Testing,” IEEE International Conference on EMC, Aug. 1991, pp. 236-241
[9] R. K. Keenan and L. A. Rosi, “Some Fundamental Aspects of ESD Testing, part II,” IEEE International Conference on EMC, Aug. 1992, pp. 469-473
[10] K. Hall and D. McCarthy, “Tests with different IEC801.2 ESD simulators have different results depending on product sensitivities,” IEEE International Conference on EMC, Aug. 1995, pp. 280-284.
[11] R. Chundru, D. Pommerenke, K. Wang, T. V. Doren, F. P. Centola, and J. S. Huang, “Characterization of human Metal ESD reference discharge event and correlation of generator parameters to failure levels-part I: reference event,” IEEE Trans. Electromagn. Compat., vol. 46, Nov. 2004, pp.498-504.
[12] R. Chundru, D. Pommerenke, K. Wang, T. V. Doren, F. P. Centola, and J. S. Huang, “Characterization of human Metal ESD reference discharge event and correlation of generator parameters to failure levels-part II: correlation of generator parameters to failure levels,” IEEE Trans. Electromagn. Compat., vol. 46, Nov. 2004, pp.505-511.

[13] Warren Boxleitner, “Electrostatic Discharge and Electrostatic equipment,” IEEE Press., 1988, chapter 1~2.
[14] R. C. Pepe, “ESD multiple discharges,” in Proc. IEEE Int. Symp EMC,Cherry Hills, NJ, Aug. 1991, pp. 253–258.
[15] P. Richman, “Classification of ESD hand/metal current waves versus approach speed, voltage, electrode geometry and humidity,” in Proc. IEEE Symp. EMC, San Diego, CA, Sept. 1986, pp. 451–460.
[16] R. G. Reninger, “Mechanism of charge device ESD,” J. Electrostatics,vol. 28, pp. 253–283, Sept. 1992.
[17] D.D. Ward, “Electrostatic discharge,” IEE Seminar on EMC Design, 1999, pp.4/1-4/8.
[18] http://www.nani.com.tw/big5/content/2002-04/02/content_6362.htm
[19] http://content.edu.tw/junior/phy_chem/ty_lk/sir/content/cph8/b1001.htm
[20] http://www.midwestesd.org/fundesd1.html
[21] V. Prasad Kodali, “Engineering electromagnetic compatibility,” 2nd edition, The Institute of Electrical and Electronics Engineers Inc., 2001, section 2.4 and 8.3.
[22] M. N. O. Sadiku and C. M. Akujuobi, “Electrostatic discharge (ESD),” IEEE Potentials, Vol. 22, Dec. 2003-Jan. 2004, pp.39-41
[23] ANSI/ESD S20.20-1999 standard
[24] IEC 61000-4-2, Electromagnetic compatibility (EMC) Part4: “Testing and measurement techniques-Section 2: electrostatic discharge immunity test,” 1995.
[25] J.Barth, “Measurements of real ESD threats have been ignored too long,” Instrumentation & Measurement Magazine, IEEE,Volume 8, Issue 4, Oct. 2005 Page(s):61 – 63
[26] D. Pommerenke and M. Aidam, “To what extent do contact-mode and indirect ESD test methods reproduce reality?” EOS/ESD Symposium Proceedings, pp. 101-109, 1995.
[27] Agilent Com.,“http://cp.literature.agilent.com/litweb/pdf/5988-7976ZHA.pdf”.
[28] K. Hilty, H. Ryser and U. Herrmann, “Calibration of electrostatic discharge generators and results of an international comparison,” IEEE Trans. Iinstru. and Mea., vol. 50, no.2, pp. 414 -418, Apr. 2001.
[29] Kai Wang, D.Pommerenke, R. Chundru, T. Van Doren and J.L. Drewniak, “Numerical modeling of electrostatic discharge generators,” IEEE Trans Electromagn. Compat., vol. 45, no.2, pp. 258-271, May 2003.
[30] H. Tanaka, O. Fujiwara and Y. Yamanaka , “A circuit approach to simulate discharge current injected in contact with an ESD-gun,” IEEE 3rd Int. Symp. Electromagn. Compat., May 2002, pp. 486-489.
[31] W. Meek and W. Crags, “Electrical Breakdown of Gases,” New York:Oxford Univ. Press, 1978.
[32] L.B. Loeb “Electrical Coronas,”Univ. of California Press,1965
[33] Raether, H. “Electron Avalanches and Breakdown in gases,” Butterworth, London
[34] F. Paschen, Wied. Ann., vol.37, 1889, pp.69-96.
[35] D. Pommerenke, “ESD: Transient fields, arc simulation, and rise time limit,”
  J. Electrostat., vol. 36, pp. 31–54, Oct. 1995.
[36] M. Angeli and E. Cardelli, “Finite-difference frequency-domain (FDFD) modeling of EMI by ESD,” IEEE Trans. Magn., vol. 31, pp. 2064–2067, May 1995.
[37] G. Cerri, R. DeLeo, V. M. Primiani, and M. Righetti, “Field penetration into metallic enclosures through slots excited by ESD,” IEEE Trans.Electromagn. Compat., vol. 36, pp. 110–116, May 1994.
[38] 邱冠銘, “電子裝置靜電放電測試的模擬分析與實驗,” 中山大學碩士論文, 2004.
[39] Yee Kane, “Numerical solution of inital boundary value problems involving maxwell's equations in isotropic media,” IEEE Transactions on Antennas and Propagation, pp.302-307, 1966.
[40] 黄乙上, “高速印刷電路板中靜電放電現象之理論與實驗探討,” 中山大學碩士論文, 2003.
[41] ”ABCs of Probes”, Tektronix Inc., 1997.
[42] Douglas C. Smith, “High frequency measurement and noise in electronic circuits,”
New York,1993.
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:校內校外均不公開 not available
開放時間 Available:
校內 Campus:永不公開 not available
校外 Off-campus:永不公開 not available

您的 IP(校外) 位址是 3.12.71.237
論文開放下載的時間是 校外不公開

Your IP address is 3.12.71.237
This thesis will be available to you on Indicate off-campus access is not available.

紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code