Responsive image
博碩士論文 etd-0628106-185035 詳細資訊
Title page for etd-0628106-185035
論文名稱
Title
台南鹼氯工廠海水貯存池中魚類的汞及硒蓄積研究
Mercury and Selenium Concentrations in Fishes from the Water Reservoir of a Chlor-alkali Plant in Tainan
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
131
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2006-06-16
繳交日期
Date of Submission
2006-06-28
關鍵字
Keywords
總汞、硒、食用安全性、種別差異、肥滿度指數、生殖腺指數、肝指數、鹼氯工業、有機汞
condition factor, heptasomatic index, species difference, edibility, selenium, total mercury, organic mercury, chlor-alkali plant, gonasomatic index
統計
Statistics
本論文已被瀏覽 5808 次,被下載 26
The thesis/dissertation has been browsed 5808 times, has been downloaded 26 times.
中文摘要
本研究首次針對台灣鹼氯工廠鄰近水域中生息的魚類進行其組織中總汞、有機汞及硒濃度的分析,藉由與其他地區測值的比較瞭解污染程度,並評估食用安全性;同時探討魚體內汞及硒的蓄積在種別及組織別的差異,兩元素間的交互關係及對魚體成長與發育的影響。
2003年9月22至10月13日期間,在台南市安南區鄰近鹿耳門溪出海口,已廢置22年的鹼氯工廠海水貯存池,進行四次的採集。採得海鰱(Elops machnata)、四線雞魚(Pelates quadrilineatus)、曳絲鑽嘴魚(Gerres filamentosus)、短棘鰏(Leiognathus equulus)、漢式綾鯷(Thryssa hamiltonii)、吳郭魚(Orechromis niloticus)、環球海鰶(Nematalosa come)、大鱗鮻(Liza macrolepis)、烏魚(Mugil cephalus)及虱目魚(Chanos chanos)等10種魚類及20個底泥樣品。分析魚肉、肝臟、腎臟、生殖腺及鰓五種組織與底泥樣品的總汞及有機汞濃度,此外,並測定魚肉及肝臟中的硒濃度。
結果顯示,安順鹼氯工廠海水貯存池中的底泥總汞和有機汞濃度(mg/kg乾重)分別為43.2±23.4及0.013±0.008;魚肉中的總汞、有機汞及硒濃度(mg/kg 濕重)分別為0.432±0.360、0.305±0.206及0.126±0.030,為典型鹼氯工業汞污染之測值。其中海鰱、四線雞魚、曳絲鑽嘴魚、漢氏綾鯷、短棘鰏、吳郭魚與環球海鰶等七種魚,在國人一般的食用海鮮習慣下即有汞攝入過量之虞。
魚肉中所含總汞及有機汞濃度皆呈現顯著的種別差異,明顯以肉食魚高於雜食及草食魚,魚肝及腎中的有機汞濃度同樣以肉食魚明顯較高,但總汞濃度卻以雜食魚高於肉食及草食魚。此外,魚肉和魚肝中的硒濃度亦存在顯著的種別差異,但與食性並無明顯的關聯。魚體組織間的差異,多以肝臟及腎臟較高,生殖腺及肌肉次之,鰓最低,而硒濃度均以肝臟高於肌肉。
吳郭魚在肝臟總汞濃度達10 mg/kg 濕重時,魚肉中的總汞濃度會驟降,並持續在0.4 mg/kg 濕重上下。吳郭魚肝臟中的無機汞與硒濃度皆隨體重增加而上升,但有機汞卻無此趨勢,並維持在較低值。
魚體組織中的高汞濃度,會影響魚體的健康指數。魚肉及魚肝中汞濃度的增加,在環球海鰶及虱目魚會呈現肝指數降低,而吳郭魚則是肥滿度指數下降。此外,更發現吳郭魚的魚肉、魚肝及生殖腺中的汞濃度達到一個閾值時,生殖腺指數會明顯低下。
Abstract
The objectives of this study were to investigate the difference and interaction of mercury (Hg) and selenium (Se) among fish species and tissues. In addition, by comparing with the detected concentrations in other regions, it would be possible to evaluate the pollution status. In the meanwhile, this study analyzed the edibility of the fish, the interaction between Hg and Se as well as their impacts on fish growth.
Ten species of fish, including tenpounder (Elops machnata), fourlined terapon (Pelates quadrilineatus), whipfin silverbiddy (Gerres filamentosus), common ponyfish (Leiognathus equulus), Hamilton's thryssa (Thryssa hamiltonii), tilapia (Orechromis niloticus), western Pacific gizzard shad (Nematalosa come), large-scaled mullet (Liza macrolepis), flathead mullet (Mugil cephalus) and milkfish (Chanos chanos), and 20 sediment samples were collected from September to October of 2003 at the reservoir adjacent to a chlor-alkali plant, which had been abandoned for 22 years in Tainan City. Total mercury (THg) and organic mercury (OHg) concentrations were determined in fish muscles, livers, kidneys, gonads, gills and sediment samples. Besides, Se concentrations were also analyzed in fish muscles and livers.
Concentrations (mg/kg dry wt.) of THg and OHg in sediment were 43.2±23.4(mean±sd) and 0.013±0.008, respectively. THg, OHg and Se concentrations (mg/kg wet wt.) in fish muscles were 0.432±0.360, 0.305±0.206 and 0.126±0.030, similar to the concentrations in other chlor-alkali polluted regions. With the diet habit of Taiwanese, the Hg concentrations of muscles in the seven fish species exceeded the limit of Hg which was allowed to be consumed by humans.
THg and OHg concentrations in the fish muscles showed significant species difference. Obviously, the concentrations in carnivorous fishes were higher than those in omnivorous and herbivorous fishes. The OHg concentrations of fish livers and kidneys were highest in carnivorous fishes, but the THg concentrations were higher in omnivorous fishes than in that of carnivorous and herbivorous fishes. Besides, Se concentrations in fish muscles and livers also showed significant species difference, but did not show relation with the feeding habit of fishes. The Hg levels among fish tissues were highest in livers or kidneys, followed by gonads and muscles, lowest in gills. Generally speaking, Se levels were higher in livers than in muscles.
The liver THg concentrations of tilapia reached 10 mg/kg wet wt. Their muscle THg concentrations decreased suddenly and maintained at a level about 0.4 mg/kg wet wt. Meanwhile, the liver inorganic Hg and Se concentrations increased with fish weight, while the liver OHg concentrations did not show such a trend but stay at a low level.
High Hg concentrations in the fish tissues resulted in adverse effects on fish health. High Hg concentrations in muscles and livers caused heptasomatic index to decrease in western Pacific gizzard shad and milkfish, and condition factor declined in tilipia. Moreover, gonasomatic index remained low while the Hg concentrations of muscles, livers and gonads reached a threshold, which suggested that the growth of those fishes was likely inhibited in Hg polluted environment.
目次 Table of Contents
目錄
壹、前言--------------------------------------------------1
1.1 汞在自然界中之分佈------------------------------------1
1.2 汞對生物的毒害----------------------------------------1
1.3 鹼氯工業地區魚類的汞蓄積研究--------------------------2
1.4 研究目的----------------------------------------------6
貳、材料與方法--------------------------------------------7
2.1 採樣地點描述------------------------------------------7
2.2 樣品收集----------------------------------------------7
2.3 樣品前處理及參數測定----------------------------------8
2.3.1 魚類樣品前處理--------------------------------------8
2.3.2 肝指數、生殖腺、肥滿度指數及魚齡的計算--------------8
2.3.3 底泥樣品前處理--------------------------------------9
2.4 實驗器皿清洗程序--------------------------------------9
2.5 分析樣品的消化----------------------------------------9
2.5.1 總汞的消化及分析步驟--------------------------------9
2.5.2 有機汞的萃取及消化步驟-----------------------------10
2.5.3 硒的消化及分析步驟---------------------------------11
2.6 標準溶液配製-----------------------------------------13
2.7 實驗分析之品保(QA, Quality Assurance)和品管(QC, Quality Control)檢定-------------------------------------13
2.8 分析設備及儀器與樣品的偵測下限-----------------------13
2.9 數據處理與分析---------------------------------------14
參、結果-------------------------------------------------16
3.1 底泥的汞蓄積情形-------------------------------------16
3.2 魚類的基本生物資料-----------------------------------16
3.3 國際標準樣品查核結果---------------------------------19
3.4 魚體組織中汞與硒濃度之種別差異-----------------------19
3.4.1 肌肉中汞與硒濃度之種別差異-------------------------19
3.4.2 肝臟中汞與硒濃度之種別差異-------------------------21
3.4.3 腎臟中汞濃度之種別差異-----------------------------22
3.4.4 生殖腺中汞濃度之種別差異---------------------------23
3.4.5 鰓部中汞濃度之種別差異-----------------------------23
3.4.6 胃內容物中汞濃度之種別差異-------------------------24
3.5 同魚種體內汞及硒濃度的組織差異-----------------------25
3.5.1 海鰱-----------------------------------------------25
3.5.2 吳郭魚---------------------------------------------25
3.5.3 環球海鰶-------------------------------------------26
3.5.4 大鱗鮻---------------------------------------------26
3.5.5 烏魚-----------------------------------------------26
3.5.6 虱目魚---------------------------------------------27
3.6 魚體各組織中有機汞與總汞濃度之相關性-----------------27
3.6.1 海鰱-----------------------------------------------27
3.6.2 吳郭魚---------------------------------------------27
3.6.3 環球海鰶-------------------------------------------28
3.6.4 虱目魚---------------------------------------------28
3.7 魚體肌肉及肝臟中硒與汞濃度之交互關係-----------------28
3.7.1 海鰱-----------------------------------------------28
3.7.2 吳郭魚---------------------------------------------29
3.7.3 環球海鰶-------------------------------------------29
3.7.4 虱目魚---------------------------------------------29
3.8 同魚種肌肉與肝臟間相同元素的交互關係-----------------30
3.8.1 吳郭魚---------------------------------------------30
3.8.2 虱目魚---------------------------------------------30
3.9 魚體各組織中汞和硒濃度及有機汞比例與體長、體重之相關性----------------------------------------------------------31
3.9.1 海鰱-----------------------------------------------31
3.9.2 吳郭魚---------------------------------------------31
3.9.3 環球海鰶-------------------------------------------32
3.9.4 虱目魚---------------------------------------------32
3.10魚體肥滿度和肝指數與肌肉及肝臟中汞、硒濃度及有機汞比例間的相關性-----------------------------------------------33
3.10.1 海鰱----------------------------------------------33
3.10.2 吳郭魚--------------------------------------------33
3.10.3 環球海鰶------------------------------------------34
3.10.4 虱目魚--------------------------------------------34
3.11吳郭魚生殖腺指數與肌肉、肝臟及生殖腺中汞及硒濃度間的相關性-----------------------------------------------------35
肆、討論-------------------------------------------------36
4.1 與國外鹼氯工業污染區的底泥中測值之比較---------------36
4.2 與台灣其他地區的同種魚比較---------------------------37
4.3 與國外鹼氯工業污染區的魚體組織中測值之比較-----------37
4.4 食用安全性之探討-------------------------------------39
4.5 各組織中汞濃度之種別差異-----------------------------40
4.6 汞及硒蓄積濃度之組織差異-----------------------------42
4.7 魚體組織中的汞及硒蓄積濃度與體型之關係---------------45
4.8 汞與硒濃度之交互關係---------------------------------46
4.9 魚肉與魚肝中汞濃度之交互關係-------------------------48
4.10組織中的汞蓄積對魚體成長優劣的影響-------------------48
4.11組織中的汞蓄積對魚體生殖腺發育的影響-----------------50
伍、參考文獻---------------------------------------------51
表-------------------------------------------------------61
圖-------------------------------------------------------76
附錄----------------------------------------------------115
參考文獻 References
英文部分:
Abreu, S. N., Pereira, E. and Duarte, A. C. 2000. Accumulation of mercury in sea bass from a contaminated lagoon (Ria de Aveiro, Portugal). Marine Pollution Bulletin 40: 293-297.
Adams, S. M. 1999. Ecological role of lipids in the health and success of fish populations. In: Arts, M. T. and Wainman, B. C. (eds.). Lipids in freshwater ecosystems. Springer-Verlag, New York, pp. 132-160.
AL-Majed, N. B and Preston, M. R. 2000. An assessment of the total and methylmercury content of zooplankton and fish tissue collected from Kuwait territorial waters. Marine Pollution Bulletin 40: 298-307.
Alonso, D., Pineda, P., Olivero, J., González, H. and Campos, N. 2000. Mercury levels in muscle of two fish species and sediments from the Cartagena Bay and the Ciénaga Grande de Santa Marta, Columbia. Environmental Pollution 109: 157-163.
Armstrong, F. A. J. and Uthe, J. F. 1971. Semi-automated determination of mercury in animal tissue. Atomic Absorption Newsletter 10: 101-103.
Arribére, .M A., Ribeiro Guevara, S., Sánchez, R. S., Gil, M. I., Román Ross, G., Daurade, L. E., Fajon, V., Horvat, M., Alcalde, R. and Kestelman, A. J. 2003. Heavy metals in the vicinity of a chlor-alkali factory in the upper Negro River ecosystem, Northern Patagonia, Argentina. Science of the Total Environment 301: 187-203.
Assadi, H. and Dehghani, R. P. 1997. Atlas of the Persian Gulf and the Sea of Oman fishes. Iranian Fisheries Research and Training Organization, Iran. (Cited from http://www.fishbase.org/home.htm, in 4/28/2006)
Batrup, E. 1990. Structural and functional effects of heavy metals on the nervous system, including sense organs, of fish. Comparative Biochemistry and Physiology 100: 253-257.
Berntssen, M. H. G., Aatland, A. and Handy, R. D. 2003. Chronic dietary mercury exposure causes oxidative stress, brain lesions, and altered behaviour in Atlantic salmon (Salmo salar) parr. Aquatic Toxicology 65: 55-72.
Biester, H., Müller, G. and Schöler, H. F. 2002. Estimating distribution and retention of mercury in three different soils contaminated by emissions from chlor-alkali plants. part I. Science of the Total Environment 284: 177-189.
Bloom, N. S., Moretto, L. M., Scopece, P. and Ugo, P. 2004. Seasonal cycling of mercury and monomethyl mercury in the Venice Lagoon (Italy). Marine Chemistry 91: 85-99.
Brant, H. A., Jagoe, C., Snodgrass, J. W., Bryan Jr, A. L. and Garboldi, J. C. 2002. Pontential risk to wood storks (Mycteria americana) from mercury in Carolina Bay fish. Environmental Pollution 120: 405-413.Burger, J., Gaines, K. F., Boring, C. S., Stephens, Jr. W. L., Snodgrass, J. and Gochfeld, M. 2001. Mercury and selenium in fish from Savannah River: Species, trophic level, and locational differences. Environmental Research Section A 87: 108-118.
Burger, J., Gochfeld, M., Jeitner, C., Burke, S. and Stamm, T. 2006. Metal levels in flathead sole (Hippoglossoides elassodon) and great sculpin (Myoxocephalus polyacanthocephalus) from Adak Island, Alaska: Potential risk to predators and fishermen. Environmental Research (in press).
Chen, M. H. 1992. Investigation of copper and cadmium in the food chain of three-spined stickleback populations, Gasterosteus aculeatus L., in the River Wandle, U. K. Ph. D. Thesis King’s college London, pp. 300.
Chen, M. H. and Chou, C. L. 2000. An instrumental correction for the determination of mercury in biological and sediment samples using cold vapor atomic absorption spectrophotometry. Journal of the Chinese Chemical Society 47: 1145-1153.
Chen, M. H. 2002. Baseline metal concentrations in sediments and fish, and the determination of bioindicators in the subtropical Chi-ku Lagoon, S.W. Taiwan. Marine Pollution Bulletin 44: 703-714.
Chen, Y. W.; Belzile, N. and Gunn, J. M. 2001. Antagonistic effect of selenium on mercury assimilation by fish populations near Sudbury metal smelters? Limnology and Oceanography 46: 1814-1818.
Cizdziel, J., Hinners, T., Pollard, J., Heithmar, E. and Cross, C. 2002. Mercury concentrations in fish from Lake Mead, USA, related to fish size, condition, trophic level, location, and consumption risk. Archives of Environmental Contamination and Toxicology 43: 309-317.
Cizdziel, J., Hinners, T., Cross, C. and Pollard, J. 2003. Distribution of mercury in the tissues of five species of freshwater fish from Lake Mead, USA. Journal of Environmental Monitoring 5: 802-807.
Clarkson, T. W. 1992. Mercury: major issues in environmental health. Environmental Health Perspectives 100: 31-38.
Compeau, G. and Bartha, R. 1984. Methylation and demethylation of mercury under controlled red-ox, pH, and salinity conditions. Applied Environmental Microbiology 48: 1203-1207.
Corpuz, A., Saeger, J. and Sambilay, V. 1985. Population parameters of commercially important fishes in Philippine waters. Fisheries Journal. University of the Philippines in the Visayas 6: pp. 99.
Cox, P. A. 1989. The Elements: Their Origin, Abundance, and Distribution. Oxford University Press, Oxford, pp. 216.
Degetto, S., Schintu, M., Contu, A. and Sbrignadello, G. 1997. Santa Gilla lagoon (Italy): a mercury sediment pollution case study. Contamination assessment and restoration of the site. Science of the Total Environment 204: 49-56.
Domagalski, J. 2001. Mercury and methylmercury in water and sediment of the Sacramento River Basin, California. Applied Geochemistry 16: 1677-1691.
Downs, S. G., Macleod, C. L., and Lester, J. N. 1998. Mercury in precipitation and its relation to bioaccumulation in fish: A literature review. Water, Air, and Soil Pollution 108: 149-187.
FAO/WHO. 2003. Summary and conclusions of the sixty-first meeting of the Joint FAO/WHO Expert Committee on Food Additives, p. 22.
Fishbase web site. http://www.fishbase.org/home.htm (Cited in 4/28/2006)
Fitzgerald, W. F. and Mason, R. P. 1997. Biogeochemical cycling of mercury in the marine environment. Metal Ions in Biological Systems 34: 53-111.
Fitzgerald, W. F., Engstrom, D. R., Mason, R. P. and Nater, E. A. 1998. The case for atmospheric mercury contamination in remote areas. Environmental Science and Technology 32: 1-12.
Friedmann, A. S., Watzin, M. C., Brinck-Johnsen, T. and Leiter, L. C. 1996. Low levels of methylmercury inhibit growth and gonadal development in juvenile walleye (Stizostedion vitreum). Aquatic Toxicology 35: 265-278.
Friedmann, A. S., Costain, E. K., MacLatchy, D. L., Stansley, W. and Washuta, E. J. 2002. Effect of mercury on general and reproductive health of largemouth bass (Micropterus salmoides) from three lakes in New Jersey. Ecotoxicology and Environmental Safety 52: 117-122.
Fujiki, M. and Tajima, S. 1992. The pollution of Minamata Bay by mercury. Water Science and Technology 25: 133-140.
Gagnon, C., Pelletier, E. and Mucci, A. 1997. Behaviour of anthropogenic mercury in coastal marine sediments. Marine Chemistry 59: 159-176.
Hall, B. D., Bodaly, R. A., Fudge, R. J. P., Rudd, J. W. M. and Rosenberg, D. M. 1997. Food as the dominant pathway of methylmercury uptake by fish. Water, Air, and Soil Pollution 100: 13-24.
Harada, M., Nakanishi J. and Konuma S. 1998. The present mercury contents of scalp hair and clinical symptoms inhabitants of the Minamata area. Environmental Research 77: 160-164.
Harris, R. C. and Snodgrass, W. J. 1993. Bioenergetic simulations of mercury uptake and retention in walleye (Stizostedion vitreum) and yellow perch (Perca flavescens). Water Pollution Research Journal of Canada 28: 217-236.
Harrison, I. J. and Senou, H. 1997. Order Mugiliformes. Mugilidae. Mullets. In: Carpenter, K. E. and Niem, V. H. (eds.) FAO species identification guide for fishery purposes. The living marine resources of the Western Central Pacific. Volume 4. Bony fishes part 2 (Mugilidae to Carangidae). FAO, Rome, pp. 2069-2108.
(Cited from http://www.fishbase.org/home.htm, in 4/28/2006).
Hilton, J. W., Hodson, P. V. and Slinger, S. J. 1982. Absorption, distribution, half-life and possible routes of elimination of dietary selenium in juvenile rainbow trout (Salmo gairdneri). Comparative Biochemistry and Physiology 71: 49-55.
Hissler, C. and Probst, J. L. 2006. Impact of mercury atmospheric deposition on soils and streams in a mountainous catchment (Vosges, France) polluted by chlor-alkali industrial activity: The important trapping role of the organic matter. Science of the Total Environment 361: 163-178.
Hoedt, F. E. 1992. Age and growth of a large tropical anchovy, Thryssa hamiltoni (Gray): a comparison of ageing techniques. Australian Journal of Marine and Freshwater Research 43: 953-971.
Holsbeek, L., Das, H. K. and Joiris, C. R. 1997. Mercury speciation and accumulation in Bangladesh freshwater and anadromous fish. Science of the Total Environment 198: 201-210.
Hornung, H., Krumgalz, B. S. and Cohen, Y. 1984. Mercury pollution in sediments, benthic organisms and inshore fishes of Haifa Bay, Israel. Marine Environmental Research 12: 191-208.
Horvat, M., Nolde, N., Fajon, V., Jereb, V., Logar, M., Lojen, S., Jacimovic, R., Falnoga, I., Qu, L., Faganeli, J. and Drobne, D. 2003. Total mercury, methylmercury and selenium in mercury polluted areas in the province Guizhou, China. Science of the Total Environment 304: 231-256.
Ingles, J. and Pauly, D. 1984. An atlas of the growth, mortality and recruitment of Philippines fishes. ICLARM Technical Reports 13: International Center for Living Aquatic Resources Management, Manila, Philippines, pp. 127.
(Cited from http://www.fishbase.org/home.htm, in 4/28/2006).
Irukayama, K. 1977. Case history of Minamata. In: Tsubaki, T. and Irukayama, K. (eds.). Minamata Disease. Kodansha-Elsevier, Tokyo-
Amsterdam, pp. 1-56.
Kannan, K. and Falandysz, J. 1998. Speciation and concentrations of mercury in certain coastal marine sediments. Water, Air, and Soil Pollution 103: 129-136.
Kannan, K., Smith, R. G., Lee, R. F., Windom, H. L., Heitmuller, P. T., Macauley, J. M. and Summers, J. K. 1998. Distribution of total mercury and methyl mercury in water, sediment, and fish from south Florida estuaries. Archives of Environmental Contamination and Toxicology 34: 109-118.
Kehrig, H. A., Costa, M., Moreira, I. and Malm, O. 2002. Total and methylmercury in a Brazilian estuary, Rio de Janeiro. Marine Pollution Bulletin 44: 1018-1023.
Kehrig, H. A., Pinto, F. N., Moreira, I. and Malm, O. 2003. Heavy metals and methylmercury in a tropical coastal estuary and a mangrove in Brazil. Organic Geochemistry 34: 661-669.
Kennedy, C. J., McDonald, L. E. and Strosher, M. M. 2000. The effect of bioaccumulated selenium on mortalities and deformities in the eggs, larvae, and fry of a wild population of cutthroat trout (Oncorhynchus clarki lewisi). Archives of Environmental Contamination and Toxicology 39: 46-52.
Kirubagaran, R. and Joy, K. P. 1992. Toxic effects of mercury on testicular activity in the freshwater teleost, Clarias batrachus. Journal of Fish Biology 41: 305-315.
Kitamura, S., Ueda, K., Niino, J., Ujioka, T., Misumi, H. and Kakita, T. 1960. Minamata-byo nikansuru Kagaku-dokubutu Kensaku Seiseki in Japanese. The Journal of the Kumamoto Medical Society 34: 593-601.
Kljaković-Gašpić Z., Odžak, N., Ujević, I., Zronarić, T., Horvat, M. and Barić, A. 2005. Biomonitoring of mercury in polluted coastal area using transplanted mussels. Science of the Total Environment (in press).
Koeman, J. H., Peeters, W., Koudstaal-Hol, C., Tjioe, P. and de Goeij, J. 1973. Mercury-selenium correlations in marine mammals. Nature 245: 385-386.
Kumamoto Prefecture. 1998. Minamata-wan kankyo fukugen jigyou no gaiyou in Japanese. (Cited from Tomiyasu, 2005.日本熊本縣官方刊物,無法取得完整文獻來源).
Landis, M. S., Keeler, G. J., Al-Wali, K. I. and Stevens, R. K. 2004. Divalent inorganic reactive gaseous mercury emissions from a mercury cell chlor-alkali plant and its impact on near-field atmospheric dry deposition. Atmospheric Environment 38: 613-622.
Lieske, E. and Myers, R. 1994. Collins Pocket Guide. Coral reef fishes. Indo-Pacific & Caribbean including the Red Sea. Haper Collins Publishers, pp. 400.
(Cited from http://www.fishbase.org/home.htm, in 4/28/2006)
Lima, A. P. S., Sarkis, J. E. S., Shihomatsu, H. M. and Müller, R. C. S. 2005. Mercury and selenium concentrations in fish samples from Cachoeira do PiriáMunicipality, ParáState, Brazil. Environmental Research 97: 236-244.
Lloret, J., Sola, L. G., Souplet, A. and Galzin, R. 2002. Effects of large-scale habitat variability on condition of demersal exploited fish in the north-western Mediterranean. Journal of Marine Science 59: 1215-1227.
Lohner, T. W., Reash, R. J., Willet, V. E. and Rose, L. A. 2001. Assessment of tolerant sunfish populations (Lepomis sp.) inhabiting selenium-laden coal ash effluents. Ecotoxicology and Environmental Safety 50: 203-216.
Lord, C. G., Gaines, K. F., Boring, C. S., Brisbin, Jr. I. L., Gochfeld, M. and Burger, J. 2002. Raccoon (Procyon lotor) as a Bioindicator of mercury contamination at the U. S. Department of Energy’s Savannah River site. Archives of Environmental Contamination and Toxicology 43: 356-363.
Mackay, N. J., Kazacos, M. N., Williams, R. J. and Leedow, M. I. 1975. Selenium and heavy metals in black marlin. Marine Pollution Bulletin 6: 57-61.
Maher, W., Deaker, M., Jolley, D., Krikowa, F. and Roberts, B. 1997. Selenium occurrence, distribution and speciation in the cockle Anadara trapezia and the mullet Mugil cephalus. Applied Organometallic Chemistry 11: 313-326.
Maršálek, P., Svobodová, Z., Randák, T. and Švehla, J. 2005. Mercury and methylmercury contamination of fish from the Skalka Reservoir: A case study. Acta Veterinaria Brno 74: 427-434.
Mason, R. P., Fitzgerald, W. F. and Morel, F. M. M. 1994. The biogeochemical cycling of elemental mercury: anthropogenic influences. Geochimica et Cosmochimica Acta 58: 3191-3198.
Mauk, R. J. and Brown, M. L. 2001. Selenium and mercury concentrations in brood-stock walleye collected from three sites on Lake Oahe. Archives of Environmental Contamination and Toxicology 40: 257-263.
Meador, J. P., Ernest, D. W. and Kagley, A. N. 2005. A comparison of the non-essential elements cadmium, mercury, and lead found in fish and sediment from Alaska and California. Science of the Total Environment 339: 189-205.
Mikac, N., Picer, M., Stegnar, P. and Tušek-Žnidarić, M. 1985. Mercury distribution in a polluted marine area, ratio of total mercury, methyl mercury and selenium in sediments, mussels and fish. Water Research 19: 1387-1392.
Moreau, J., Bambino, C. and Pauly, D. 1986. Indices of overall growth performance of 100 tilapia (Cichlidae) populations. In: Maclean, J. L., Dizon, L. B. and Hosillos, L. V. (eds.). The First Asian Fisheries Forum. Asian Fisheries Society. Manila, Philippines, pp. 727.
(Cited from http://www.fishbase.org/home.htm, in 4/28/2006).
Morel, F. M. M., Kraepiel, A. M. L. and Amyot, M. 1998. The chemical cycle and bioaccumulation of mercury. Annual Review of Ecology Systematics 29: 543-566.
Muir, D., Wang, X., Bright, D., Lockhart, L. and Köck, G. 2005. Spatial and temporal trends of mercury and other metals in landlocked char from lakes in the Canadian Arctic archipelago. Science of the Total Environment 351-352: 464-478.
Nguyen, H. L., Leermakers, M., Kurunczi, S., Bozo, L. and Baeyens, W. 2005. Mercury distribution and speciation in Lake Balaton, Hungary. Science of the Total Environment 340: 231-246.
Nigro, M., Campana, A., Lanzillotta, E. and Ferrara, R. 2002. Mercury exposure and elimination rates in captive bottlenose dolphins. Marine Pollution Bulletin 44: 1071-1075.
Oda, C. E. and Ingle, Jr. J. D. 1981. Speciation of mercury by cold vapor atomic absorption spectrophotometry with selective reduction. Analytical Chemistry 53: 2305-2309.
Paulsson, K. and Lundbergh, K. 1989. The selenium method for treatment of lakes for elevated levels of mercury in fish. Science of the Total Environment 87-88: 495-507.
Paulsson, K. and Lundbergh, K. 1991. Treatment of mercury contaminated fish by selenium addition. Water, Air, and Soil Pollution 56: 833-841.
Pauly, D. 1978. A preliminary compilation of fish length growth parameters. Berichte aus dem Institut für Meereskunde an der Christian-Albrechts Universitaet Kiel 55: 1-200.
Pauly, D. 1979. Gill size and temperature as governing factors in fish growth: a generalization of von Bertalanffy's growth formula. Berichte des Instituts für Meereskunde an der Christian-Albrechts Universität Kiel 63: pp. 156.
Piani, R., Covelli, S. and Biester, H. 2005. Mercury contamination in Marano Lagoon (Northern Adriatic sea, Italy): Source identification by analyses. Applied Geochemistry 20: 1546-1559.
Régine, M-B., Gilles, D., Yannick, D. and Alain, B. 2005. Mercury distribution in fish organs and food regimes: Significant relationships from twelve species collected in French Guiana (Amazonian basin). Science of the Total Environment (in press).
Rémy, S., Prudent, P., Hissler, C., Probst, J. L. and Krempp, G. 2003. Total mercury concentrations in an industrialized catchment, the Thur River basin (north-eastern France): geochemical background level and contamination factors. Chemosphere 52: 635-644.
Roux, C. 1986. Gerridae. In: Daget, J., Gosse, J.-P. and Thys van den Audenaerde, D. F .E. (eds.). Check-list of the freshwater fishes of Africa (CLOFFA). ORSTOM, Paris, 2: 325-326.
(Cited from http://www.fishbase.org/home.htm, in 4/28/2006).
Salini, J. P., Brewer, D. T. and Blaber, S. J. M. 1998. Dietary studies on the predatory fishes of the Norman River estuary, with particular reference to penaeid prawns. Estuarine, Coastal and Shelf Science 46: 837-847.
SAS 8.02. 1999-2001. SAS Institute Inc., NC, USA.
Scerbo, R., Ristori, T., Stefanini, B., De Ranieri, S. and Barghigiani, C. 2005. Mercury assessment and evaluation of its impact on fish in the Cecina river basin (Tuscany, Italy). Environmental Pollution 135: 179-186.
Schreck, C. B. and Moyle, P. B. 1990. Methods for Fish Biology. American Fisheries Society, pp. 704.
Shulman, G. E. and Love, R. M. 1999. The biochemical ecology of marine fishes. In: Advances in Marine Ecology. Academic Press, London, 36: pp. 351.
Shum, G. T. C., Freeman, H. C. and Uthe, J. F. 1979. Determination of organic (methyl) mercury in fish by graphite furnance atomic absorption spectrophotometry. Analytical Chemistry 51: 414-416.
Sommer, C., Schneider, W. and Poutiers, J. M. 1996. FAO species identification field guide for fishery purposes. The living marine resources of Somalia. FAO, Rome, pp. 376.
(Cited from http://www.fishbase.org/home.htm, in 4/28/2006).
Southworth, G. R., Peterson, M. J. and Turner, R. R. 1994. Changes in concentrations of selenium and mercury in largemouth bass following elimination of fly ash discharge to a quarry. Chemosphere 29: 71-79.
Stoichev, T., Amouroux, D., Wasserman, J. C., Point, D., De Diego, A., Bareille, G. and Donard, O. F. X. 2004. Dynamics of mercury species in surface sediments of a macrotidal estuarine-coastal system (Adour River, Bay of Biscay). Estuarine, Coastal and Shelf 59: 511-521.
Svobodová, Z., Dušek, L., Hejtmánek, M., Vykusová, B. and Šmíd, R. 1999. Bioaccumulation of mercury in various fish species from Orlík and Kamýk water reservoirs in the Czech Republic. Ecotoxicology and Environmental Safety 43: 231-240.
Thomson, J. M. 1990. Mugilidae. In: Check-list of the fishes of the eastern tropical Atlantic (CLOFETA). UNESCO, Paris, 2.
(Cited from http://www.fishbase.org/home.htm, in 4/28/2006).
Tomiyasu, T., Matsuyama, A., Eguchi, T., Fuchigami, Y., Oki, K., Horvat, M., Rajar, R. and Akagi, H. 2005. Spatial variations of mercury in sediment of Minamata Bay, Japan. Science of the Total Environment (in press).
Torres, F. S. B. 1991. Tabular data on marine fishes from Southern Africa, Part I. Length-weight relationships. Fishbyte 9: 50-53.
Uthe, J. F., Armstrong, F. A. J. and Stainton, M. P. 1970. Mercury determination in fish samples by wet digestion and flameless atomic absorption spectrophotometry. Journal of the Fisheries Research Board of Canada 27: 805-811.
Uthe, J. F., Solomon, J. and Grift, B. 1972. Rapid semimicro method for the determination of methylmercury in fish tissue. Journal of AOAC International 55: 583-589.
Wagemann, R., Trebacz, E., Boila, G. and Lockhart, W. L. 2000. Mercury species in the liver of ringed seals. Science of the Total Environment 261: 21-32.
Watras, C. J. and Bloom, N. S. 1992. Mercury and methylmercury in individual zooplankton: implication for bioaccumulation. Limnology and Oceanography 37: 1313-1318.
Wang, A., Barber, D. and Pfeiffer, C. J. 2001. Protective effects of selenium against mercury toxicity in cultured Atlantic spotted dophins (Stenella plagiodon) renal cells. Archives of Environmental Contamination and Toxicology 41: 403-409.
Weis, I. M. 2004. Mercury concentrations in fish from Canadian Great Lakes areas of concern: an analysis of data from the Canadian Department of Environment database. Environmental Research 95: 341-350.
Wester, P. W. and Canton, H. H. 1992. Histopathological effects in Poecilia reticulata (guppy) exposed to methyl mercury chloride. Toxicologic Pathology 20: 81-92.
Whitehead, P. J. P. 1985. FAO species catalogue. Clupeoid fishes of the world (suborder Clupeioidei). An annotated and illustrated catalogue of the herrings, sardines, pilchards, sprats, shads, anchovies and wolf-herrings. Part 1 - Chirocentridae, Clupeidae and Pristigasteridae. FAO Fisheries Synopsis 125: 1-303.
WHO. 1990. World Health Organization. Environmental Health Criteria No. 101 : Methylmercury. pp. 140.
Wiener, J. G. and Spry, D. J. 1996. Toxicological significance of mercury in freshwater fish. In: Beyer, W., Heinz, G. and Redmon-Norwood, A. (eds.). Environmental Contaminants in Wildlife: Interpreting Tissues Concentrations. Lewis, pp. 297-339.
Wohlfarth, G. W. and Hulata, G. 1983. Applied genetics of tilapias. ICLARM Studies and Reviews 6: pp. 26.
Wu, S. J., Chang, Y. H., Fang, C. W. and Pan, W. H. 1999. Food Sources of Weight, Calories, and Three Macro-nutrients-NAHSIT 1993-1996. Nutritional Sciences Journal 100: 41-58.
Zhou, H. Y. and Wong, M. H. 2000. Mercury accumulation in freshwater fish with emphasis on the dietary influence. Water Research 34: 4234-4242.
中文部分:
行政院環境保護署廢棄物管理處。1988。事業廢棄物管制近程措施執行成果報告書。203頁。
行政院環境保護署中石化安順廠污染專題網站。http://ww2.epa.gov.tw/soilgw/d001/part1-4.htm (in 4/28/2006)
蕭水銀。1991。環境毒物對神經致毒作用之研究。科學發展 19: 75-79。
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:校內一年後公開,校外永不公開 campus withheld
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus:永不公開 not available

您的 IP(校外) 位址是 18.191.46.36
論文開放下載的時間是 校外不公開

Your IP address is 18.191.46.36
This thesis will be available to you on Indicate off-campus access is not available.

紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code