Responsive image
博碩士論文 etd-0628107-160401 詳細資訊
Title page for etd-0628107-160401
論文名稱
Title
熱休克對於內毒素所誘發的大鼠小腸發炎及黏液分泌抑制效應之研究
Inhibitory effect of heat shock on endotoxin-induced inflammation and secretion in rat small intestine
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
69
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2007-06-05
繳交日期
Date of Submission
2007-06-28
關鍵字
Keywords
黏液、內毒素、熱休克
heat shock, endotoxin, mucus
統計
Statistics
本論文已被瀏覽 5658 次,被下載 5
The thesis/dissertation has been browsed 5658 times, has been downloaded 5 times.
中文摘要
消化道的上皮組織在正常情況下,是藉由緻密接合所連接,可做為結構性的保護屏障及細胞間的通道,當發炎反應發生時,發炎組織的微循環系統會有血管滲透性增加的現象,造成血漿滲漏。同時,在哺乳類的腸道上皮組織存在有許多的杯狀細胞,在發炎的情況下會排放黏液,其分泌的黏液主要的功能是保護及潤滑小腸內腔,被視為抵抗腸道細菌入侵,物理性傷害與化學性刺激物的第一道防線。熱休克反應是最原始的細胞防禦機制之一,生物體在種種的壓力情況,包括環境的(紫外線輻射或重金屬),病理的(感染或惡性腫瘤),生理的(生長因子)刺激下會誘發熱休克蛋白產生。
本實驗使用兩種不同品系的大鼠作為實驗對象,探討熱休克反應對內毒素所誘發的血漿滲漏與杯狀細胞的黏液排放有何影響。利用印地安墨汁當追蹤劑,標定發炎血漿滲漏的血管。小腸絨毛表面杯狀細胞黏液分泌的情形則利用掃描式電子顯微鏡觀察,並使用數位影像分析軟體 (SimplePCI, Compix, Inc.) 進行計量分析。實驗結果顯示,注射內毒素之實驗組相較於注射生理食鹽水之對照組,在兩個品系皆明顯的引起血漿滲漏並增加杯狀細胞黏液的排放。杯狀細胞進行複合胞吐作用排放出黏液顆粒後,在小腸絨毛表面可觀察到許多的孔洞。LE品系大鼠予以熱休克前處理,可以抑制內毒素注射後30分鐘或1小時所誘發的小腸血漿滲漏現象達到58-80%(P <0.01);而在內毒素注射後1小時,可以減少內毒素所誘發的迴腸杯狀細胞黏液排放(P <0.05)。SD品系大鼠予以熱休克前處理,可以抑制內毒素注射後1小時所誘發的小腸血漿滲漏現象達到56-68%(P<0.01),以及減少十二指腸和迴腸杯狀細胞黏液排放(P <0.05)。由實驗結果推論,對內毒素所誘發的發炎與黏液排放現象,熱休克反應可以達到保護大鼠腸道的作用。
Abstract
The gastrointestinal epithelium normally sealed by tight junctions, which act as a structural barrier and paracellular channels. Inflammation can increase the permeability of microvasculature that result in plasma leakage. Mammalian intestinal epithelium has many goblet cells which discharge mucus in the inflammatory response. The discharging mucus functioning is as a defensive barrier and lubricant. The mucus layer is the anatomical site at which the host first encounters gut bacteria, physical damage, and chemical stimulant. The heat shock response is one of the most primitive cellular defense mechanism. A variety of stressful situations including environmental (ultraviolet radiation or heavy metals), pathological (infections or malignancies), or physiological (growth factors) stimuli induce heat shock proteins.
This study investigated the effect of heat shock on endotoxin-induced plasma leakage and goblet cell mucus discharge in the small intestine of rats of Sprague-Dawley (SD) and Long-Evans (LE) strains. India ink was used as the tracer to detect leaky microvessels. The mucus secretion of the goblet cells of intestinal villi was observed with scanning electron microscopy and calculated with digital morphomertric software SimplePCI. Our results showed that endotoxin-induced plasma leakage and goblet cell discharging in the two strains increased significantly as compared to rat groups receiving saline. Numerous openings on the epithelial surface of villi resulted from compound exocytosis of mucus granules in goblet cells. Either 30 min or 1h after LPS injection, heat shock pretreatment in LE rats LPS-induced plasma leakage in the duodenum and ileum was reduced by 58-80% (P<0.01). 1 h after LPS injection in LE rats pretreated with heat shock, the number of discharging goblet cells in the ileum was reduced (P<0.05). In SD rats, heat shock inhibited LPS-induced plasma leakage in the duodenum and ileum at 1h after LPS injection by 56-68% (P<0.01), and the number of discharging goblet cells was reduced in the duodenum and ileum (P<0.05). In conclusion, heat shock could protect rat intestine from endotoxin-induced inflammation and mucus secretion.
目次 Table of Contents
【中文摘要】--------------------------------------------------------------------2
【Abstract】----------------------------------------------------------------------4
【緒論】--------------------------------------------------------------------------6
【研究目的】-------------------------------------------------------------------14
【實驗流程】-------------------------------------------------------------------15
【材料與方法】----------------------------------------------------------------16
【實驗結果】-------------------------------------------------------------------23
【討論】-------------------------------------------------------------------------31
【結論】-------------------------------------------------------------------------36
【參考文獻】-------------------------------------------------------------------37
【圖及圖解】-------------------------------------------------------------------44
參考文獻 References
Abulafia-Lapid R, Elias D, Raz I, Keren-Zur Y, Atlan H, and Cohen IR. T cell proliferative responses of type 1 diabetes patients and healthy individuals to human hsp60 and its peptides. J Autoimmun 12: 121-129, 1999.

Aktan F. iNOS-mediated nitric oxide production and its regulation. Life Sci 75: 639-653, 2004.

Anderson JM, and Van Itallie CM. Tight junctions and the molecular basis for regulation of paracellular permeability. Am J Physiol 269: G467-475, 1995.

Assaly R, Olson D, Hammersley J, Fan PS, Liu J, Shapiro JI, and Kahaleh MB. Initial evidence of endothelial cell apoptosis as a mechanism of systemic capillary leak syndrome. Chest 120: 1301-1308, 2001.

Bandholtz L, Guo Y, Palmberg C, Mattsson K, Ohlsson B, High A, Shabanowitz J, Hunt DF, Jornvall H, Wigzell H, Agerberth B, and Gudmundsson GH. Hsp90 binds CpG oligonucleotides directly: implications for hsp90 as a missing link in CpG signaling and recognition. Cell Mol Life Sci 60: 422-429, 2003.

Basbaum CB. Regulation of airway secretory cells. Clin Chest Med 7: 231-237, 1986.

Basu S, Binder RJ, Suto R, Anderson KM, and Srivastava PK. Necrotic but not apoptotic cell death releases heat shock proteins, which deliver a partial maturation signal to dendritic cells and activate the NF-kappa B pathway. Int Immunol 12: 1539-1546, 2000.

Basu S, and Srivastava PK. Calreticulin, a peptide-binding chaperone of the endoplasmic reticulum, elicits tumor- and peptide-specific immunity. J Exp Med 189: 797-802, 1999.
Beutler B. Endotoxin, toll-like receptor 4, and the afferent limb of innate immunity. Curr Opin Microbiol 3: 23-28, 2000.

Blackwell TS, Yull FE, Chen CL, Venkatakrishnan A, Blackwell TR, Hicks DJ, Lancaster LH, Christman JW, and Kerr LD. Multiorgan nuclear factor kappa B activation in a transgenic mouse model of systemic inflammation. Am J Respir Crit Care Med 162: 1095-1101, 2000.

Bocker U, Schottelius A, Watson JM, Holt L, Licato LL, Brenner DA, Sartor RB, and Jobin C. Cellular differentiation causes a selective down-regulation of interleukin (IL)-1beta-mediated NF-kappaB activation and IL-8 gene expression in intestinal epithelial cells. J Biol Chem 275: 12207-12213, 2000.

Brockhausen I, Schutzbach J, and Kuhns W. Glycoproteins and their relationship to human disease. Acta Anat (Basel) 161: 36-78, 1998.

Brune B, von Knethen A, and Sandau KB. Nitric oxide (NO): an effector of apoptosis. Cell Death Differ 6: 969-975, 1999.

Cario E, Rosenberg IM, Brandwein SL, Beck PL, Reinecker HC, and Podolsky DK. Lipopolysaccharide activates distinct signaling pathways in intestinal epithelial cell lines expressing Toll-like receptors. J Immunol 164: 966-972, 2000.

Chan SH, Wang LL, Ou CC, and Chan JY. Contribution of peroxynitrite to fatal cardiovascular depression induced by overproduction of nitric oxide in rostral ventrolateral medulla of the rat. Neuropharmacology 43: 889-898, 2002.

Chow JC, Young DW, Golenbock DT, Christ WJ, and Gusovsky F. Toll-like receptor-4 mediates lipopolysaccharide-induced signal transduction. J Biol Chem 274: 10689-10692, 1999.

Christman JW, Holden EP, and Blackwell TS. Strategies for blocking the systemic effects of cytokines in the sepsis syndrome. Crit Care Med 23: 955-963, 1995.

Coleman JW. Nitric oxide in immunity and inflammation. Int Immunopharmacol 1: 1397-1406, 2001.

Dybdahl B, Wahba A, Lien E, Flo TH, Waage A, Qureshi N, Sellevold OF, Espevik T, and Sundan A. Inflammatory response after open heart surgery: release of heat-shock protein 70 and signaling through toll-like receptor-4. Circulation 105: 685-690, 2002.

Ebadi M, Srinivasan SK, and Baxi MD. Oxidative stress and antioxidant therapy in Parkinson's disease. Prog Neurobiol 48: 1-19, 1996.

Elewaut D, DiDonato JA, Kim JM, Truong F, Eckmann L, and Kagnoff MF. NF-kappa B is a central regulator of the intestinal epithelial cell innate immune response induced by infection with enteroinvasive bacteria. J Immunol 163: 1457-1466, 1999.

Enss ML, Cornberg M, Wagner S, Gebert A, Henrichs M, Eisenblatter R, Beil W, Kownatzki R, and Hedrich HJ. Proinflammatory cytokines trigger MUC gene expression and mucin release in the intestinal cancer cell line LS180. Inflamm Res 49: 162-169, 2000.

Essler M, Staddon JM, Weber PC, and Aepfelbacher M. Cyclic AMP blocks bacterial lipopolysaccharide-induced myosin light chain phosphorylation in endothelial cells through inhibition of Rho/Rho kinase signaling. J Immunol 164: 6543-6549, 2000.

Evans T, Carpenter A, Silva A, and Cohen J. Inhibition of nitric oxide synthase in experimental gram-negative sepsis. J Infect Dis 169: 343-349, 1994.

Farmer P, and Pugin J. beta-adrenergic agonists exert their "anti-inflammatory" effects in monocytic cells through the IkappaB/NF-kappaB pathway. Am J Physiol Lung Cell Mol Physiol 279: L675-682, 2000.


Gotoh T, Terada K, Oyadomari S, and Mori M. hsp70-DnaJ chaperone pair prevents nitric oxide- and CHOP-induced apoptosis by inhibiting translocation of Bax to mitochondria. Cell Death Differ 11: 390-402, 2004.

Guha M, and Mackman N. LPS induction of gene expression in human monocytes. Cell Signal 13: 85-94, 2001.

Hartl FU, and Hayer-Hartl M. Molecular chaperones in the cytosol: from nascent chain to folded protein. Science 295: 1852-1858, 2002.

Huang HT. Unilateral cervical vagotomy decreases the magnitude of neurogenic inflammation induced by capsaicin in the ipsilateral bronchial tree of rats. Anat Embryol (Berl) 188: 363-370, 1993.

Jarry A, Vallette G, Branka JE, and Laboisse C. Direct secretory effect of interleukin-1 via type I receptors in human colonic mucous epithelial cells (HT29-C1.16E). Gut 38: 240-242, 1996.

Jones NL, Islur A, Haq R, Mascarenhas M, Karmali MA, Perdue MH, Zanke BW, and Sherman PM. Escherichia coli Shiga toxins induce apoptosis in epithelial cells that is regulated by the Bcl-2 family. Am J Physiol Gastrointest Liver Physiol 278: G811-819, 2000.

Kim KJ, and Malik AB. Protein transport across the lung epithelial barrier. Am J Physiol Lung Cell Mol Physiol 284: L247-259, 2003.

Laboisse C, Jarry A, Branka JE, Merlin D, Bou-Hanna C, and Vallette G. Recent aspects of the regulation of intestinal mucus secretion. Proc Nutr Soc 55: 259-264, 1996.

Lo YK, and Huang HT. A novel procedure for mediastinal vagotomy inhibits neurogenic inflammation in rat bronchial tree. J Auton Nerv Syst 67: 79-88, 1997.

Meyer J, Lentz CW, Stothert JC, Jr., Traber LD, Herndon DN, and Traber DL. Effects of nitric oxide synthesis inhibition in hyperdynamic endotoxemia. Crit Care Med 22: 306-312, 1994.

Morimoto RI, Kline MP, Bimston DN, and Cotto JJ. The heat-shock response: regulation and function of heat-shock proteins and molecular chaperones. Essays Biochem 32: 17-29, 1997.

Park HS, Lee JS, Huh SH, Seo JS, and Choi EJ. Hsp72 functions as a natural inhibitory protein of c-Jun N-terminal kinase. Embo J 20: 446-456, 2001.

Parsell DA, and Lindquist S. The function of heat-shock proteins in stress tolerance: degradation and reactivation of damaged proteins. Annu Rev Genet 27: 437-496, 1993.

Pope RM, Lovis RM, and Gupta RS. Activation of synovial fluid T lymphocytes by 60-kd heat-shock proteins in patients with inflammatory synovitis. Arthritis Rheum 35: 43-48, 1992.

Rane MJ, Pan Y, Singh S, Powell DW, Wu R, Cummins T, Chen Q, McLeish KR, and Klein JB. Heat shock protein 27 controls apoptosis by regulating Akt activation. J Biol Chem 278: 27828-27835, 2003.

Rea IM, McNerlan S, and Pockley AG. Serum heat shock protein and anti-heat shock protein antibody levels in aging. Exp Gerontol 36: 341-352, 2001.

Rietschel ET, Kirikae T, Schade FU, Mamat U, Schmidt G, Loppnow H, Ulmer AJ, Zahringer U, Seydel U, Di Padova F, and et al. Bacterial endotoxin: molecular relationships of structure to activity and function. Faseb J 8: 217-225, 1994.

Rivoltini L, Castelli C, Carrabba M, Mazzaferro V, Pilla L, Huber V, Coppa J, Gallino G, Scheibenbogen C, Squarcina P, Cova A, Camerini R, Lewis JJ, Srivastava PK, and Parmiani G. Human tumor-derived heat shock protein 96 mediates in vitro activation and in vivo expansion of melanoma- and colon carcinoma-specific T cells. J Immunol 171: 3467-3474, 2003.

Schabbauer G, Tencati M, Pedersen B, Pawlinski R, and Mackman N. PI3K-Akt pathway suppresses coagulation and inflammation in endotoxemic mice. Arterioscler Thromb Vasc Biol 24: 1963-1969, 2004.

SenGupta D, Norris PJ, Suscovich TJ, Hassan-Zahraee M, Moffett HF, Trocha A, Draenert R, Goulder PJ, Binder RJ, Levey DL, Walker BD, Srivastava PK, and Brander C. Heat shock protein-mediated cross-presentation of exogenous HIV antigen on HLA class I and class II. J Immunol 173: 1987-1993, 2004.

SenGupta D, Norris PJ, Suscovich TJ, Hassan-Zahraee M, Moffett HF, Trocha A, Draenert R, Goulder PJ, Binder RJ, Levey DL, Walker BD, Srivastava PK, and Brander C. Heat shock protein-mediated cross-presentation of exogenous HIV antigen on HLA class I and class II. J Immunol 173: 1987-1993, 2004.

Steiger D, Hotchkiss J, Bajaj L, Harkema J, and Basbaum C. Concurrent increases in the storage and release of mucin-like molecules by rat airway epithelial cells in response to bacterial endotoxin. Am J Respir Cell Mol Biol 12: 307-314, 1995.

Sun D, Chen D, Du B, and Pan J. Heat shock response inhibits NF-kappaB activation and cytokine production in murine Kupffer cells. J Surg Res 129: 114-121, 2005.

Szewczuk MR, and Depew WT. Evidence for T lymphocyte reactivity to the 65 kilodalton heat shock protein of mycobacterium in active Crohn's disease. Clin Invest Med 15: 494-505, 1992.

Tracey WR, Tse J, and Carter G. Lipopolysaccharide-induced changes in plasma nitrite and nitrate concentrations in rats and mice: pharmacological evaluation of nitric oxide synthase inhibitors. J Pharmacol Exp Ther 272: 1011-1015, 1995.

Triantafilou K, Triantafilou M, and Dedrick RL. A CD14-independent LPS receptor cluster. Nat Immunol 2: 338-345, 2001.

Triantafilou M, and Triantafilou K. Heat-shock protein 70 and heat-shock protein 90 associate with Toll-like receptor 4 in response to bacterial lipopolysaccharide. Biochem Soc Trans 32: 636-639, 2004.

Tsan MF, and Gao B. Cytokine function of heat shock proteins. Am J Physiol Cell Physiol 286: C739-744, 2004.

Wallin RP, Lundqvist A, More SH, von Bonin A, Kiessling R, and Ljunggren HG. Heat-shock proteins as activators of the innate immune system. Trends Immunol 23: 130-135, 2002.

Xu Q, Schett G, Perschinka H, Mayr M, Egger G, Oberhollenzer F, Willeit J, Kiechl S, and Wick G. Serum soluble heat shock protein 60 is elevated in subjects with atherosclerosis in a general population. Circulation 102: 14-20, 2000.

Yoo CG, Lee S, Lee CT, Kim YW, Han SK, and Shim YS. Anti-inflammatory effect of heat shock protein induction is related to stabilization of I kappa B alpha through preventing I kappa B kinase activation in respiratory epithelial cells. J Immunol 164: 5416-5423, 2000.

Zanin-Zhorov A, Bruck R, Tal G, Oren S, Aeed H, Hershkoviz R, Cohen IR, and Lider O. Heat shock protein 60 inhibits Th1-mediated hepatitis model via innate regulation of Th1/Th2 transcription factors and cytokines. J Immunol 174: 3227-3236, 2005.

Zugel U, and Kaufmann SH. Immune response against heat shock proteins in infectious diseases. Immunobiology 201: 22-35, 1999.
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:校內公開,校外永不公開 restricted
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus:永不公開 not available

您的 IP(校外) 位址是 3.21.97.61
論文開放下載的時間是 校外不公開

Your IP address is 3.21.97.61
This thesis will be available to you on Indicate off-campus access is not available.

紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code