Responsive image
博碩士論文 etd-0628110-144308 詳細資訊
Title page for etd-0628110-144308
論文名稱
Title
熱浸鍍鋅鋼材鐵鋁阻障層形成機構研究
Studies on the Formation Mechanisms of the Fe-Al Inhibition Layer in the Galvanized Steels
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
163
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2010-06-14
繳交日期
Date of Submission
2010-06-28
關鍵字
Keywords
雙相鋼、阻障層、鐵鋅相、鐵鋁相、熱浸鍍鋅、表面選擇性氧化
FeZn13, outburst, Fe2Al5
統計
Statistics
本論文已被瀏覽 5639 次,被下載 2266
The thesis/dissertation has been browsed 5639 times, has been downloaded 2266 times.
中文摘要
  本研究針對不同碳、錳含量鋼材,分析退火後表面的氧化物以及不同鋁含量鋅浴中浸鍍1~10秒生成之鐵鋁層,進而探討影響鐵鋁層生成的因素與建構鐵鋁層的生成機構。研究結果顯示:在800 oC退火後,低錳鋼表面氧化層較薄,其厚度與鋼材碳含量和退火氣氛關係不大,低露點(-70 oC)時氧化物以MnAl2O4為主;高露點(-18 oC)時以MnXO為主摻雜MnAl2O4。高錳鋼表面氧化層較厚,其厚度受露點影響較大,露點越高氧化層越厚;然而氧化物種類不受露點影響,皆由MnXO與MnAl2O4所組成。
  在鋁含量0.12 wt%之鋅浴中鍍鋅初期,鐵會先從鋼材表面溶至鋅浴中,接著鋅浴中的鋁與鐵反應生成鐵鋁相(Fe2Al5),同時鋁也會將表面MnO還原並產生氧化鋁,MnAl2O4難以被還原並阻礙鐵鋁相的鍍覆。由於前述反應皆會消耗鋁,造成鋼材表面局部區域鋁含量空乏,未能與鋁反應的鐵將與鋅反應並生成鐵鋅相(FeZn13)。隨著鍍鋅時間增加,氧化鋁會浮出表面,同時MnAl2O4亦隨著鐵原子向外擴散而浮出鋼材表面,於是鐵鋁相生成而覆蓋率得以上升。就鋼材而言,雙相鋼表面氧化層較厚,氧化物種類對鍍覆性的影響明顯,其鐵鋁相非連續平坦生成,鐵鋁層覆蓋率較低;IF-TF鋼表面氧化層較薄,鍍鋅1秒時鐵鋁層覆蓋率即可達90%以上,鐵鋁相平坦連續,卻較易生成outburst,進而降低鍍層品質。
  熱浸鍍鋅鋁含量為0.20 wt%的鋼材,鍍層內無鐵鋅相生成,鐵鋁層能以較短的鍍鋅時間達到完全覆蓋。雙相鋼氧化層較厚,熱浸鍍鋅初期,表面氧化物被還原,同時鐵鋁相在鋼材表面隨機成核生長。鐵鋁相非緊密堆疊成長,隨著鍍鋅時間增加,新的鐵鋁相在鐵鋁層的縫隙生成或向外生長。IF-TF鋼表面氧化層較薄,鋅浴中的鋁與鐵以異質磊晶的方式生成鐵鋁相,並以薄餅狀的晶粒緊密堆疊。由於鐵鋁相完整且連續,有效阻礙鐵鋅反應,因此並無outburst產生,具有較佳的鍍層品質。
Abstract
none
目次 Table of Contents
摘要IV
總目錄 V
圖目錄 VIII
表目錄 XVIII
第一章、前言 1
第二章、文獻回顧 3
2.1 熱浸鍍鋅的發展 3
2.1.1熱浸鍍鋅的起源與原理 3
2.1.2 連續式熱浸鍍鋅製程 4
2.1.3熱浸鍍鋅鋼材的發展與近況 6
2.2表面選擇性氧化 9
2.2.1氧化反應熱力學計算 9
2.2.2 氧化物的結構與種類 16
2.2.3 氧化物與熱浸鍍鋅的潤濕 19
2.3熱浸鍍鋅 21
2.3.1鋅浴鋁含量對鍍層的結構的影響 21
2.3.2鋅浴溫度對鍍層結構的影響 29
2.4熱浸鍍鋅雙相鋼與IF鋼的比較 32
2.5表面分析技術 34
2.5.1 X光光電子能譜儀分析 34
2.5.2 歐傑電子能譜儀分析 36
第三章、實驗方法 38
3.1試片準備 38
3.2 X光光電子能譜儀(XPS)分析 41
3.3 掃描式電子顯微鏡(SEM)分析 42
3.4 掃描式歐傑電子能譜儀(SAM)分析 42
3.5 穿透式電子顯微鏡(TEM)分析 43
第四章、實驗結果與討論 45
4.1 表面氧化物分析 45
4.1.1 表面氧化物XPS分析 45
4.1.2 錳的氧化態與鍍鋅性 61
4.2 熱浸鍍鋅時鋅浴鋁含量為0.12 wt%的鍍鋅性 73
4.2.1 鐵鋅相SEM分析 73
4.2.2 鐵鋁相XPS分析 77
4.2.3 鐵鋁相SEM與SAM分析 81
4.2.4 鐵鋁相TEM分析 105
4.2.5 討論 112
4.3 熱浸鍍鋅時鋅浴鋁含量為0.20 wt%的鍍鋅性 117
4.3.1 鐵鋅相SEM分析 117
4.3.2 鐵鋁相XPS分析 119
4.3.3 鐵鋁相SEM 分析 121
4.3.4 鐵鋁相TEM分析 129
4.3.5討論 136
第五章、結論 139
第六章、參考文獻 140
參考文獻 References
1. 王宏平。2008。合金元素對雙相鋼表面選擇性氧化與鍍鋅性的影響,國立中山大學材料與光電科學系碩士學位論文。89-93頁。
2. Pistofidis, N., Vourlias, G., Konidaris, S., Pavlidou, E., Stergiou, A. and Stergioudis, G., “Microstructure of zinc hot-dip galvanized coatings used for corrosion protection,” Materials Letters 60:786-789, 2006.
3. Faderl, J., Angeli, G., Gerdenitsch, J., Hirtenlehner, K. and Strutzenberger, J., “Key features in the landscape of hot dip galvanizing,” 44th MWSP Conference Proceedings, 6:381-389, 2002.
4. Yang, K.C. and Chang, L.W., “Enhanced the hot-dip galvanizability of dual-phase steels by the suppression and reduction of selective surface oxide during different annealing atmosphere,” China Steel Technical Report, 1-20,2007.
5. Yu, J.S., Zhang, J.X., Wu, J.S., Liu, J.L. and Chen, J.G., “The overview of the coating performance of galvanized sheet applied in automobile,” PTCA (Part: A Phys. Test.), 41:325-328, 2005.
6. 江海濤、唐荻、米振莉。汽車用先進高強鋼的開發及應用發展。鋼鐵研究學報。19:1-5, 2007.
7. Chen, L., Fourmentin, R., and McDermid J.R., “Morphology and kinetics of interfacial layer formation during continuous hot-dip galvanizing and galvannealing,” Metallurgical and Materials Transactions A, 39A:2128-2142, 2008.
8. Baril, E., and L`espérance, G., “Studies of the morphology of the Al-rich interfacial layer formed during the hot dip galvanizing of steel sheet,” Metallurgical and Materials Transactions A, 30A:681-695, 1999.
9. 鄭暉、李國峰。汽車用鋼板的現況與發展趨勢。瀋陽航空工業學院學報。23:9-31, 2006。
10. Mahieu, J., Claessens, S. and De Cooman, B.C., “Galvanizability of high-strength steels for automotive applications,” Metallurgical and Meterials Transactions A, 32A:2905-2908, 2001.
11. Jordan, C.E., Goggins, K.M., Benscoter, A.O. and Marder, A.R., “Metallographic preparation technique for hot-dip galvanized and galvannealed coating on steel,” Materials Characterization, 31:107-114, 1993.
12. Bian, J., Zhu, Y., Liu, X.H. and Wang, G.D., “Development of hot dip galvanized steel strip and its application in automobile industry,” Journal of iron and steel research, International, 13:47-50, 2006.
13. Oren, E.C. and Goodwin, F.E., “Hot-dip galvanizing of advanced high-strength steel grades,” Galvatech ’04, 737-749, 2004.
14. Khondlker, R., Mertens, A. and McDermid, J.R., “Effect of annealing atmosphere on the galvanizing behavior of a dual-phase steel,” Materials Science and Engineering A, 463:157-165, 2007.
15. Silva, E.A. and Goodwin, F.E., “Challenges for zinc-based sheet steel coatings production,” Iron & Steel Technology, 56-72, 2004.
16. Tobiyama, Y. and Kato, C., “Effect of the substrate compositions on the growth of Fe-Al interfacial layer formed during hot dip galvanizing,” Tetsu-to-Hagane, 89:38-45, 2003.
17. Bordignon, L. and Crahay, J., “Dynamic effects in galvanising of high strength steels,” Galvatech ’01, 573-580, 2001.
18. Bordignon, L., Angeli, G., Bolt, H., Hekkens, R., Maschek, W., Paavilainen, J. and Eynde, X.V., “Enhanced hot dip galvanizing by controlled oxidation in the annealing furnace,” 44th MWSP Conference Proceedings, 6:833-844, 2002.
19. Kyono, K., Shimizu, T., Sakata, K. and Kato, C., “Development of high strength grade galvannealed sheet steels,” 121-128.
20. Marder, A.R., “The metallurgy of zinc-coated steel,” Progress in Materials Science 45:191-271, 2000.
21. Faderl, J., Strutzenberger, J., Angeli, J., Ritsche, S., Szinyur, J. and Wolpers, M., “Al-oxide layer on hot-dip galvanized steel sheet: Characterisation and influence on weldability,” 44th MWSP Conference Proceedings, 6:845-852, 2002.
22. Ghuman A.R.P. and Goldstein, J.I., “Reaction mechanisms for the coating formed during the hot dipping of iron in 0 to 10 prt Al-Zn baths at 450 oC to 700 oC,” Metallurgical Transactions, 2:2903-2914, 1971.
23. McDevitt, E., Morimoto, Y. and Meshii, M., “Characterization of the Fe-Al interfacial layer in a commercial hot-dip galvanized coating,” ISIJ International, 37:776-782, 1997.
24. Huin, D., Flauder, P. and Leblond, J.B., “Numerical simulation of internal oxidation of steels during annealing treatments,” Oxidation of Metals, 64:131-167, 2005.
25. Robert T. 2006. DeHoff. Thermodynamics in materials science, 2nd ed., CRC Pr I Llc, p326.
26. David R. Gaskell。2003。材料熱力學(蔡希杰譯)。初版。台北:偉明,433-440頁。
27. Jung, I.H., Decterov, S.A. and Pelton, A.D., “A thermodynamic model for deoxidation equilibria in steel,” Metallurgical and Materials Transactions B, 35B:493-507, 2004.
28. Tang, N.Y., “Determonation of liquid-phase boundaries in Zn-Fe-Mx systems,” Journal of Phase Equilibria, 21:70-77, 2000.
29. Loison, D., Huin, D., Lanteri, V., Servais, J.P. and Cremer, R., “Selective oxidation of Fe-Mn alloys: Surface characterization and modelling,” Galvatech ’01, 203-209, 2001.
30. Cvijovic, I., Parezanivic, I. and Spiegel, M., “Influence of H2-N2 atmosphere composition and annealing duration on the selective surface oxidation of low- carbon steels,” Corrosion Science 48:980-933, 2006.
31. Lamberigts, M. and Servais, J.P., “Use of XPS to investigate surface problems in ULC deep drawing steels,” Applied Surface Science 144-145:334-338, 1999.
32. Tobayama, Y., Suzuki, Y., Kyono, K. And Kato, C., “Improvement in galvanizability of high strength steels by the suppression of the selective surface oxidation of alloying elements during annealing,” Galvatech ’04, 771-781,2004.
33. Wilson, P.R. and Chen, Z., “Characterisation of surface grain boundary precipitates formed during annealing of low carbon steel sheets,” Scripta Materialia, 53:119-123, 2005.
34. Swaminathan, S. and Spiegel, M., “Thermodynamic and kinetic aspects on the selective surface oxidation of binary, ternary and quarternary model alloys,” Applied Surface Science 253:4607-4619, 2007.
35. Hashimoto, I., Sarro, K., Nomura, M., Yamamoto, T. And Takeda, H., “Effects of partical pressure of water vapor in annealing atmosphere on wattability of Mn, Si containing steel with molten zinc,” Tetsu-to-Hagane, 89:31-37, 2003.
36. Drillet, P., Zermout, Z., Bouleau, D. and Mataigne, J.M., “Selective oxidation of IFTi stabilized steels during recrystallization annealing, and steel/Zn reactivity,” Galvatech ’01, 195-202, 2001.
37. Li, X.S., Beak, S.I., Oh, C.S., Kim, S.J. and Kim, Y.W., “Dew-point controlled oxidation of Fe-C-Mn-Al-Si-Cu transformation-induced plasticity-aided steel,” Scripta Materialia 59:209-293, 2008.
38. Guttmann, M., Lepretre, Y., Aubry, A., Rochi, M.J., Moreau, T., Drillet, P., Mataigne, J.M. and Baidin, H., “Mechanisms of the galvanizing reaction. Influence of Ti and P contents in steel and of its surface microstructure after annealing,” Galvatech ’95, 295-207, 1995.
39. Nishimoto, A., Inagaki, J.I. and Nakaoka, K., “Effects of surface microstructure and chemical compositions of steels on fFormation of Fe-Zn compounds during continuous galvanizing,” Transaction ISIJ, 26:807-813, 1986.
40. Feliu, Jr. and Pérez-Revenga, M.L., “Effect of alloying elements (Ti, Nb, Mn and P) and the water vapour content in the annealing atmosphere on the surface composition of interstitial-free steels at the galvanising temperature,” Applied Surface Science, 229:112-123, 2004.
41. Drillet, P., Zermout, Z., Bouleau, D., Mataigne, J. and Claessens, S., “Selective oxidation of high Si, Mn and Al steel grade duringrecrystallization annealing, and steel/Zn reactivity,” Galvatech ’04 , 1123-1134, 2004.
42. Frenznick, S., Borissov, D. and Rohwerder, M., “Fundamental investigation of the effect of oxides on the reaction kinetics during hot dip galvanizing,” Galtech ’07, 444-447, 2007.
43. Hamada, E., Nagoshi, M., Sato, K. and Sakurai M., “Initial stage Fe-Zn reaction during got dip galvanizing of Si-added steel,” Galvatech ’07, 482-486, 2007.
44. Bellhouse, E.M. and McDermid, J.R., “Analysis of the Fe-Zn interface of galvanized high Al-low Si TRIP steels,” Materials Science and Engineering A, 491:39-46, 2008.
45. Guttmann, M., “Diffusive phase transformation in hot dip galvanizing,” Materials Science Forum, 155-156:527-548, 1994
46. Inagaki, J.I., Sakurai, M. and Watanabe, T., “Alloying reactions in hot dip galvanizing and galvannealing processes,” ISIJ International, 35:1388-1393, 1995.
47. Tang, N.Y., “Comment on Fe-Al-Zn,” Journal of Phase Equilibria, 15:237-238, 1994.
48. Tang, N.Y., Adams, G.R. and Kolisnyk, P.S., “On determining effective aluminum in continuous galvanizing baths,” Galvatech ’95, 1-6, 1995.
49. Peng, B., Wang, J., Su, X., Li, Z. and Yin, F., “Effects of zinc bath temperature on the coatings of hot-dip galvanizing,” Surface and Coating Technology, 202:1785-1788, 2008.
50. Jordan, C.E. and Marder, A.R., “Fe-Zn phase formation in interstitial-free steels hot-dip galvanized at 450 oC. Part I 0.00 wt% Al-Zn baths,” Journal of Materials science, 32:5593-5602, 1997.
51. Ohtsubo, H., Yagi, T., Nakai, K. And Ohmori, Y., “Crystallography of intermetallic interface layers in hot-dip galvanizing steel sheets,” ISIJ International, 36:317-323, 1996.
52. Harvey, G.J. and Mercer P.C., “Aluminum-rich alloy layers formed during the hot dip galvanizing of low carbon steel,” Metallurgical Transactions, 4:619-612, 1973.
53. Morimoto, Y., McDevitt, E. and Meshii, M., “Characterization of the Fe-Al inhibition layer formed in the initial stages of hot-dip galvannealing,” ISIJ International, 37:906-193, 1997.
54. Wang, K.K., Chang, L., Gan, D. and Wang, H.P., “Heteroepitaxial growth of Fe2Al5 inhibition layer in hot-dip galvanizing of an interstitial-free steel,” Thin Solid Films, 1-8, 2009.
55. Luther, F., Dimyati, A., Beste, D., Bleck, W. and Mayer, J., “Surface conditioning of a cold-rolled dual-phase steel by annealing in nitriding atmospheres prior to hot-dip galvanizing,” Advance Engineering Materials, 9:274-279, 2007.
56. Bellhouse, E. and McDermid, J., “The analysis of the iron-zinc interface of galvamized TRIP steel,” Galvatech ’07, 487-492, 2007.
57. Bellhouse, E.M., Mertens, A.I.M. and McDermid, J.R., “Development of the surface structure of TRIP steels prior to hot-dip galvanizing,” Materials Science and Engineering A, 463:147-156, 2007.
58. Feliu Jr., S., Perez-Revenga, M.L., “Correlation between the surface chemistry of annealed IF steels and the growth of a galvanneal coating,” Acta Materialia, 53,2857-2866, 2005.
59. John F. Watts, and John Wolstenholme. 2003. An introduction to surface analysis by XPS and AES. Wiley-VCH, pp.1-77.
60. 王建琪、吳文輝、馮大明。1992。電子能譜學(XPS/XAES/UPS)引論。初版。北京市:國防工業,251頁。
61. John C. Vickerman. 1997. Surface Analysis. England: Wiley, pp.43-133.
62. Eynde, X.V., Servais, J.P. and Lamberigts, M., “Investigation into the surface selective oxidation of dual-phase steels by SPA, SAM and SIMS,” Surface and Interface Analysis, 35:1004-1014, 2003.
63. 王光國。未發表之實驗數據。中山大學材料與光電科學學系。
64. Suzuki, Y.,Yamashita, T., Sugimoto, Y., Fujita, S. and Yamaguchi, S., “Thermodynamic analysis of selective oxidation behavior of Si and Mn-add steel during recryststallization annealing,” Tetsu-to-Hagane, 96:11-20, 2010.
65. Greenwood, N.N. and Earnshaw A. 1984. Chemistry of the elements. Pergamon , p1220.
66. Saito, M., Uchida, Y., Kittaka, T., Hirose, Y. and Hisamatsu, Y.,”Formation behavior of alloy layer in initial stages of galvanizing,” Tetsu-to-Hagane, 77:947-954,1991.
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:校內立即公開,校外一年後公開 off campus withheld
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus: 已公開 available


紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code