Responsive image
博碩士論文 etd-0628111-184600 詳細資訊
Title page for etd-0628111-184600
論文名稱
Title
利用同差接收器與載波相位回復技術解調振幅與相位移鍵控的傳輸實驗研究
APSK Transmission Experiment with Homodyne Receiver Using Carrier Phase Recovery
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
73
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2011-06-22
繳交日期
Date of Submission
2011-06-28
關鍵字
Keywords
同調檢測、光鎖相迴路、調變格式、振幅與相位移鍵控、數位同調接收器、數位信號處理
APSK, Modulation format, Optical phase-locked loop, Coherent detection, Digital coherent receiver, Digital signal processing
統計
Statistics
本論文已被瀏覽 5682 次,被下載 1
The thesis/dissertation has been browsed 5682 times, has been downloaded 1 times.
中文摘要
在當前的傳輸系統中,傳輸量仍然不足,因為光纖通訊系統的可利用資訊頻寬受限於光放大器,所以要如何更有效率的運用頻寬是一件非常重要的議題。因此,振幅與相位移鍵控 (APSK) 在改善頻譜效率以及有效地增加傳輸量是一項很吸引人的調變技術。
進階的調變格式與同調檢測技術都可以有效的提高傳輸量以及頻譜效率。然而在同差檢測系統中,利用光鎖相迴路 (PLL) 鎖住本地振盪器 (LO) 與信號的相位仍舊很難實現而且使得其接收電路更加複雜。所以利用數位同調接收器接收信號後,再經由數位信號處理 (DSP) 即可恢復光載波的相位資訊,且透過數位信號處理的相位估計運算法後就不再需要光鎖相迴路了。儲存的資料可利用MATLAB程式離線處理計算。
本碩士論文著重在研究使用數位同調接收器與數位信號處理 (DSP) 後的振幅與相位移鍵控 (APSK) 傳輸表現,且進行497公里的傳輸實驗。接著,儲存的資料可藉由數位信號處理 (DSP) 的運算法達到離線處理計算。然後比較振幅與相位移鍵控 (APSK) 在傳輸前與497公里傳輸後的表現。
Abstract
In the current transmission systems, the transmission capacity is still not enough. The information bandwidth of the optical fiber communication system is limited by the optical amplifier bandwidth, and more efficient use of the bandwidth is a very important issue. Therefore, the amplitude and phase shift keying (APSK) is one attractive method of multi-bit per symbol modulation scheme to improve the spectral efficiency, and it can effectively increase the transmission capacity.
To improve the capacity and the spectral efficiency, the advanced modulation format is effective, and the coherent detection scheme is also effective. However, an optical phase-locked loop (PLL) to lock the local oscillator (LO) phase and the signal phase required for the homodyne detection is still difficult to realize and it makes the receiver circuit complicated. Using the digital coherent receiver, the optical carrier phase information can be recovered by means of the digital signal processing (DSP), and this scheme enables to eliminate the optical PLL circuit by the phase estimation algorithm through the DSP. The stored data can be offline processed by using the MATLAB program.
This master thesis is focusing on studying the transmission performance of the APSK format using the DSP in the digital coherent receiver. 497km transmission experiment has been conducted. Subsequently, the stored data are offline processed by the algorithms of the DSP. Then, the APSK performances between back-to-back and 497km transmission are compared.
目次 Table of Contents
誌謝 i
中文摘要 iii
Abstract iv
Contents vi
List of Figures viii
List of Tables ix

1 Introduction 1
1.1 Coherent Optical Communication Systems 1
1.2 APSK Modulation Format and Extinction Ratio 3
1.2.1 APSK Modulation Format 3
1.2.2 Extinction Ratio 5
1.3 Motivation of this Thesis 6
1.4 Structure of this Thesis 7
References 9

2 Development of Digital Coherent Receiver 11
2.1 Introduction 11
2.2 Coherent Detection of Phase-diversity Homodyne Receiver 11
2.3 Algorithm of Digital Signal Processing 16
2.3.1 BER Calculation Algorithm 16
2.3.2 Optical Carrier Phase Estimation Algorithm 17
2.4 Conclusion 20
Attachments 21
References 27

3 Experimental Study of APSK 29
3.1 Introduction 29
3.2 Experimental Setup 29
3.2.1 Transmitter 30
3.2.2 Transmission Line 32
3.2.3 Receiver 36
3.3 Experimental Results and Discussions 38
3.3.1 Eye Diagram of the APSK Signal 38
3.3.2 APSK Transmission Performance 43
3.3.3 APSK Transmission Performance after Modifying 50
3.4 Conclusion 56
References 58

4 Conclusion 59

List of Acronyms x
參考文獻 References
[1] Ivan P. Kaminow, Tingye Li, Alan E. Willner, Optical Fiber Telecommunications B: Systems and Network, pp. 95-97, chap. 3, 5th ed. (Elsevier, 2008)
[2] Govind P.Agrawal, Fiber-Optic Communication Systems, pp. 478-480, chap. 10, 3rd ed. (Wiley, 2002)
[3] Hidenori Taga, Jyun-Yi Wu, Wei-Tong Shin, and Seng-Sheng Shu,“Numerical study of the performance improvement of the APSK transmission system using zero-nulling method,” OPTICS EXPRESS, Vol. 16, No. 1, January 7, 2008.
[4] Jyun-Yi Wu, “Theoretical and experimental studies of the APSK format in long-haul optical fiber communication system,” Department of Photonics, National Sun Yat-sen University, June, 2008.
[5] Kuei-Chung Mao, “APSK Transmission Experiment Using Digital Coherent Receiver,” Department of Photonics, National Sun Yat-sen University, June, 2010.
[6] Peter J. Winzer, Rene’-Jean Essiambre, “Advanced Optical Modulation Formats,” Proc. of IEEE, Vol. 94, No. 5, pp. 952-985, May, 2006.
[7] Reinhold Noe, “Phase noise tolerant synchronous QPSK receiver concept with digital I&Q baseband processing,” in Proc.Opto-Electro. Commun. Conf., OECC 2004, Yokohama, Japan, July 12-16, 2004.
[8] D.-S. Ly-Gagnon, K. Katoh, and K. Kikuchi, “Unrepeatered optical transmission of 20 Gbit/s quadrature phase-shift keying signals over 210 km using homodyne phase-diversity receiver and digital signal processing,” Electron. Lett., Vol. 41, No. 4, February 17, 2005.
[9] Kazuro Kikuchi, “Phase-Diversity Homodyne Detection of Multilevel Optical Modulation with Digital Carrier Phase Estimation,” IEEE J. Sel. Top. Quantum Electron., Vol. 12, No. 4, pp. 563-570, July/August, 2006.
[10] Reinhold Noe, “Phase noise tolerant synchronous QPSK receiver concept with digital I&Q baseband processing,” in Proc.Opto-Electro. Commun. Conf., OECC 2004, Yokohama, Japan, July 12-16, 2004.
[11] D.-S. Ly-Gagnon, K. Katoh, and K. Kikuchi, “Unrepeatered optical transmission of 20 Gbit/s quadrature phase-shift keying signals over 210 km using homodyne phase-diversity receiver and digital signal processing,” Electron. Lett., Vol. 41, No. 4, February 17, 2005.
[12] Kazuro Kikuchi, “Phase-Diversity Homodyne Detection of Multilevel Optical Modulation with Digital Carrier Phase Estimation,” IEEE J. Sel. Top. Quantum Electron., Vol. 12, No. 4, pp. 563-570, July/August, 2006.
[13] Govind P.Agrawal, Fiber-Optic Communication Systems, pp. 479-480, chap. 10, 3rd ed. (Wiley, 2002)
[14] Ivan P. Kaminow, Tingye Li, Alan E. Willner, Optical Fiber Telecommunications B: Systems and Network, pp. 98-102, chap. 3, 5th ed. (Elsevier, 2008)
[15] Masataka Nakazawa, Kazuro Kikuchi, Tetsuya Miyazaki, High Spectral Density Optical Communication Technologies, Optical and Fiber Communications Reports 6, pp. 20-26, chap. 2. (Springer, 2010)
[16] Jiun-Ru Wang, “The Performance of Using Different Modulation Formats in Digital Coherent System,” Department of Photonics, National Sun Yat-sen University, June, 2010.
[17] S. Tsukamoto, D.-S. Ly-Gagnon, K. Katoh, and K. Kikuchi, “Coherent demodulation of 40-Gbit/s polarization-multiplexed QPSK signals with 16-GHz spacing after 200-km transmission,” in Optical Fiber Communication Conf. (OFC 2005), Anaheim, CA, Mar. 7–12, 2005, Paper PDP29.
[18] D.-S. Ly-Gagnon, S. Tsukamoto, K. Katoh, and K. Kikuchi, “Coherent detection of optical quadrature phase-shift keying signals with carrier phase estimation,” J. Lightw. Technol., vol. 24, no. 1, pp. 12–21, January, 2006.
[19] Satoshi Tsukamoto, Kazuhiro Katoh, and Kazuro Kikuchi, “Coherent Demodulation of Optical Multilevel Phase-Shift-Keying Signals Using Homodyne Detection and Digital Signal Processing,” IEEE Photon. Technol. Lett., Vol. 18, No. 10, pp. 1131-1133, May 15, 2006.
[20] Guifang Li, “Recent advances in coherent optical communication,” Advances in Optics and Photonics, Vol. 1, Issue 2, pp. 283, 2009.
[21] Masataka Nakazawa, Kazuro Kikuchi, Tetsuya Miyazaki, High Spectral Density Optical Communication Technologies, Optical and Fiber Communications Reports 6, pp. 32-33, chap. 2. (Springer, 2010)
[22] LARS THYLEN, “Integrated optics in LiNbO3 recent developments in devices for telecommunications,” IEEE J. Lightwave Technol., Vol. 6, No. 6, pp. 847-861, June, 1988
[23] A.M. Yurek, P. G. Suchoski, S.W. Merritt, and F. J. Leonberger, “COMMERCIAL LiNBO3 INTEGRATED OPTIC DEVICES,” Optics and Photonics News, Vol. 6, Issue 6, pp. 26-30, June, 1995
[24] Gerd Keiser, Optical Fiber Communication, pp. 128, chap. 3, 3rd ed. (McGraw-Hill, 2000)
[25] Govind P.Agrawal, Lightwave Technology: Telecommunication Systems, pp. 65, chap. 3 (Wiley, 2005)
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:校內一年後公開,校外永不公開 campus withheld
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus:永不公開 not available

您的 IP(校外) 位址是 18.222.69.152
論文開放下載的時間是 校外不公開

Your IP address is 18.222.69.152
This thesis will be available to you on Indicate off-campus access is not available.

紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code