Responsive image
博碩士論文 etd-0628112-130537 詳細資訊
Title page for etd-0628112-130537
論文名稱
Title
單邊裂縫鈦合金/碳纖維/聚醚醚酮奈米複材積層板之疲勞破壞及殘留性質探討
Fatigue Fracture and Mechanical Properties of Single-Edged Cracks in Ti/APC-2 Hybrid Nano-Composite Laminates
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
78
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2012-06-22
繳交日期
Date of Submission
2012-06-28
關鍵字
Keywords
APC-2、疲勞、單邊裂縫、鈦合金、奈米複材積層板
Single-Edged, Fatigue, APC-2, Titanium, Nanocomposite
統計
Statistics
本論文已被瀏覽 5658 次,被下載 788
The thesis/dissertation has been browsed 5658 times, has been downloaded 788 times.
中文摘要
本文旨在研製鈦合金碳纖維複材積層板與鈦合金奈米複材積層板探討其在不同單邊裂縫尺寸下的機械性質,積層板是由一層0.55 mm APC-2預浸布與兩層0.5 mm鈦合金所構成。在奈米複材積層板製作過程中,首先在預浸布表面均勻塗佈SiO2奈米微粒,而另外複材積層板則是沒有塗佈,並依十字疊[0/90]s疊序堆疊;為了使鈦合金與APC-2預浸布產生良好黏結,因此鈦合金先以鉻酸陽極法進行表面處理,之後以修正隔膜成型法進行熱壓,完成製作過程,再將完成後的積層板以放電加工切割單邊裂縫尺寸,如1.5 mm、3.0 mm、4.5 mm、6.0 mm。而試片拉伸與疲勞測試是以MTS 810材料測試試驗機來進行。
在靜態拉伸測試中可以得到積層板極限強度等機械性質,並依照實驗數據結果,繪製該裂縫尺寸下力量位移關係圖;在疲勞測試中,採用的負載形式為拉伸-拉伸,應力比為0.1,頻率為5 Hz,而負載波型為正弦波型,並以負荷控制為控制模式,最後將疲勞實驗數據在不同裂縫尺寸下繪製成負載與疲勞振次關係圖。
綜合所有實驗結果後,可以獲致幾點結論:首先,兩種積層板在單邊裂縫情況時之極限強度性質相當接近;第二,含裂縫的奈米積層板之抗疲勞性約優於含裂縫的積層板。
Abstract
The aims of this thesis are to fabricate the single-edged Ti/APC-2 hybrid composite laminates with and without(w/wo) nanoparticles and to investigate their mechanical properties due to tensile and cyclic tests. The composite laminates were three-layered laminates with one 0.55 mm thick APC-2 lay-ups covered by two 0.5 mm thick Grand 1 titanium alloy sheets. Nanoparitcles SiO2 were dispersed uniformly on the interfaces of APC-2 with optimal amount of 1wt%. The APC-2 was stacked according to cross-ply [0/90]s sequences. The titanium sheet surface was treated by chromic acid anodic method to achieve perfectly bonding with matrix PEEK. The modified diaphragm curing process was adopted to cure Ti/APC-2 hybrid composite laminates. The cutting of single-edged cracks with Electrical Discharge Machine, such as 1.5 mm and 3.0mm and 4.5 mm and 6.0 mm. The MTS 810 material testing machine was used to conduct all the tests.
The mechanical properties, such as ultimate tensile strength, longitudinal stiffness of composite laminates w/wo nanocomposite laminate were obtained from the static tensile tests. The stress-strain diagrams were plotted in laminates for the corresponding single-edged crack. The constant stress amplitude tension-tension cyclic tests were carried out by using load-control mode at a sinusoidal loading wave with frequency of 5Hz and stress ratio R=0.1. The received fatigue data were plotted in S-N curves for different single-edged crack.
From the results, the conclusion were summarized. First, both ultimate strengths of Ti/APC-2 composite laminates and nanocomposite laminates are very close. Second, Ti/APC-2 cross-ply nanocomposite laminates have better fatigue resistance than that of Ti/APC-2 cross-ply composite laminates.
目次 Table of Contents
摘要 i
ABSTRACT ii
目錄 iii
圖目錄 v
表目錄 ix
第一章緒論 1
1.1前言 1
1-2 材料簡介 2
1.2-1複合材料概述 2
1.2-2奈米複合材料概述 2
1.2-3鈦金屬 3
1.3 研究方向 4
1.4文獻回顧 5
第二章 研製與實驗 7
2.1 實驗材料簡介 7
2.1-1 鈦合金 7
2.1-2 碳纖維/聚醚醚銅 APC-2預浸布(AS-4/PEEK) 7
2.1-3 SiO2奈米微粒簡介 8
2.2儀器設備 8
2.3鈦合金奈米複材積層板之製程 9
2.3-1鈦合金前處理 9
2.3-2 APC-2前處理 9
2.3-3熱壓製程 9
2.3-4試片切割 10
2.4拉伸與疲勞實驗 10
第三章 實驗結果 20
3.1靜態拉伸實驗 20
3.2疲勞實驗 20
第四章 分析與討論 47
4.1 Ti/APC-2 複材積層板破壞韌性KIC探討 47
4.1-1破壞力學理論 47
4.1-2混合理論 48
4.1-3破壞力學應理論與混合理論比較 49
4.2殘留強度的探討 49
4.2-1裂縫效應之影響 49
4.2-2奈米粉效應之影響 50
4.3抗疲勞性影響探討 50
4.3-1裂縫效應之影響 50
4.3-2奈米粉效應之影響 50
4.4破壞模式 51
4.4-1拉伸破壞: 51
4.4-2疲勞破壞: 51
第五章、結論 62
參考文獻 63
參考文獻 References
1. 侯貫智,2007非鐵金屬特輯-鈦金屬篇,經濟部技術處,2007年。
2. Erdogan, F. and Sih, G. C., Transactions ASME, Journal of Basic Engineering 85D , pp. 519-527, 1963.
3. Maiti, S.K., ‘‘Unstable Edge Crack Extensions During Shearing of Bars,’’ PhD Thesis, IIT, Bombay, 1979.
4. Maiti, S.K., Journal of Strain Analysis, 15, 4 , pp.155-169, 1980.
5. Sih, G. C., Engineering Fracture Mechanics 5, pp.364-377, 1973.
6. Wu, H. C., Journal of Engineering Mechanics, Division ASCE, 100, pp.1167-1181, 1974.
7. Nuismer, R. J., ‘‘An Energy Release Rate Criterion for Mixed Mode Fracture,’’ Int. J. of Fracture, Vol. 11, pp.245-250, 1975.
8. Smith, C.W., ‘‘Use of Three-Dimensional Photoelasticity and Progress in Related Areas,’’ Experimental Techniques in Fracture Mechanics, Vol. 2 A.S. Kobayashi, ed., Society for Experimental Stress Analysis , pp.3-58, 1975.
9. Packman, P.F., ‘‘The Role of Interferometry in Fracture Studies,’’ Experimental Techniques in Fracture Mechanics, Vol.2 A.S. Kobayashi, ed., Society for Experimental Stress Analysis , pp.59-87, 1975.
10. Vlot A. Historical overview. In: Fibre metal laminates; an introduction. Dordrecht: Kluwer Academic Publishers; 2001.
11. Marissen, R., ‘‘Flight Simulation Behavior of Aramid Reinforced Aluminum Laminates (ARALL),’’ Eng. Fract. Mech., Vol.19, N0. 2, pp.261-277, 1984.
12. Marissen, R., Trautmann, K. H., Foth, J. and Nowack, H. ‘‘Micocrack Growth in Aramid Reinforceed Aluminum Laminates (ARALL),’’ Fatigue 84, Proc. 2nd Int. Conf. On Fatigue and Fatigue thresholds (edited by C. J. Beevers), Vol.II, EMAS Ltd. Warley, U.K., pp.1081-1089, 1984.
13. Marissen, R., “Fatigue Mechanisms in ARALL, a Fatigue Resistant Hybrid aluminum Aramid Composite Material,” Fatigue 87, Proc. 3rd Int. Conf. on Fatigue and Fatigue thresholds (Edited by R. O. Ritchie and E. A. Starke), Vol. 3, EMAS Ltd. Warley, U.K., pp.1271-1279, 1987.
14. Lin, C. T., Yang, F. S. and Kao, P. W., “Fatigue Behavior of Carbon Fibre-Reinforced Aluminum Laminates,” Composites, Vol.22, No. 2, pp.135-141, 1991.
15. Ritchie, R. O., Yu, W. and Bucci, R. J., “Fatigue Crack Propagation in ARALL Laminates: Measurement of the Effect of Crack-tip Shielding from Crack Bridging,” Eng. Fract. Mech., Vol.32, No. 3, pp.361-377, 1989.
16. Macheret, J., Teply, J. L. and Winter, E. F. M., “Delamination Shape Effects in Aramid-Epoxy-Aluminum (ARALL) Laminates with Fatigue Cracks,” Polymer Composites, Vol.10, No. 5, pp.322-327, 1989.
17. Leyens C., and Peters M.,“Titanium and titanium alloys electronic resource: fundamentals and applications,” Weinheim: Wiley-VCH, 2003.
18. Andersons J., Hojo M., Ochiai S.,“Empirical model for stress ratio effect on fatigue delamination growth rate in composite laminates,”International Journal of Fatigue 26, pp.597-604, 2004.
19. Gibson R. F., Principles of Composite Material Mechanics Boca Raton : CRC Press, 2007.
20. Anderson T.L., Fracture Mechanics Fundamentals and Applications Boca Raton : CRC Press, 1991.
21. Tada, H., Paris, P. C., and Irwin, G. R., The Stress Analysis of Cracks Handbook (2nd Ed.), Paris Productions, Inc., St. Louis, 1985.
22. 蔡豐懋,穿透式雙邊傾斜裂縫隻實驗與數值分析, 國立中山大學機械所碩士論文,1995。
23. 王琮瑋,疊層複合材料中疲勞裂縫成長之電腦模擬 ,國立清華大學動力機械研究所碩士論文,1999。
24. 廖偉翔,含缺口碳纖維/聚醚醚酮複合材料積之疲勞破壞層板探討,國立中山大學機電所碩士論文,2002。
25. 劉俊吾,鈦金屬/碳纖維/聚醚醚酮複材積層板之研製與機械性值探討,國立中山大學機電所碩士論文,2009。
26. 張哲愷,鈦合金/碳纖維/聚醚醚酮奈米複材積層板之研製與機械性值探討,國立中山大學機電所碩士論文,2010。
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:自定論文開放時間 user define
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus: 已公開 available


紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code