Responsive image
博碩士論文 etd-0628113-173412 詳細資訊
Title page for etd-0628113-173412
論文名稱
Title
鯻科發音系統之演變
Evolutionary Changes in the Acoustic System of the Family Terapontidae
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
93
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2013-07-15
繳交日期
Date of Submission
2013-07-28
關鍵字
Keywords
鯻科、親緣關係、發音系統、聲訊、鰾
swim bladder, phylogeny, acoustic, Terapontidae, sonic system
統計
Statistics
本論文已被瀏覽 5734 次,被下載 96
The thesis/dissertation has been browsed 5734 times, has been downloaded 96 times.
中文摘要
早期研究發現花身雞魚(Terapon jarbua)與四線雞魚(Pelates quadrilineatus)在魚鰾前室中有一對帶狀組織之特化構造,連接魚鰾背側前端與脊椎骨,而此構造有可能和發音機制關係緊密。然而,台灣引進養殖的鯻科之澳洲淡水種寶石鱸(Scortum barcoo)卻缺乏此特化構造,顯示屬間在發音構造上有變異的情況發生。此篇研究的目的為釐清鯻科發音系統, 包括其聲紋訊號( i.e. Amniatabacaudavittatus, Amniataba percoides, Hephaestus fuliginosus, Syncomistes butleri,Terapon jarbua and Pelete quadrilineatus)以及發音相關的構造(A. caudavittatus, A.percoides, Bidyanus bidyanus, H. fuliginosus, Hephaestus jenkinsi, Leiopotheraponmacrolepis, Leioptherapon plumbeus, Leiopotherapon unicolor, Pelates octolineatus, P.quadrilineatus, Pelates sexlineatus, Pelsartia humeralis, Rhyncopelates oxyrhynchus, S.barcoo, S. butleri, and T. jarbua, Terapon theraps)的演變,並使用分子資訊(16srRNA & COⅠ)來重建其科內的親緣關係。結果顯示:海水屬為較原始的類群,並且具有較發達的發音構造;反之,淡水種為較進化的物種,但部分魚屬的發音構造相對發展較為不全,甚至缺少某些特定構造,由此結果可推論發音在淡水的鯻科魚類中是較為不重要的通訊管道。
Abstract
Earlier anatomical works showed that Terapon jabua and Pelates quadrilineatus have a specialized structure: a pair of internal tendon inside of swim bladder that may play a role in sound producing. However, Scortum, a cultured species in Taiwan, lack such structure. The aim of this study was to reveal the evolutionary change of the sound-producing system including acoustic signal and sonic structure in the family Terapontidae. Phylogenic relationship of the genus was reconstructed using molecular data. The results showed that the marine species were primitive species and most of them have well developed sonic structure. On the contrary, the freshwater species were more derived but their sonic systems are less developed or even absent. It can be generalized that vocalization may be less important to freshwater grunters.
目次 Table of Contents
Introduction……………………………………………………………………………1
Material and methods………………………………………………………………….7
2.1 Study species…………………………………………………………………7
2.2 Sound recording…………………………………………………………...…7
2.2.1 Audio recording equipment…………………………………………..8
2.2.2 Acoustic analysis……………………………………………………..8
2.2.3 Statistical analyses……………………………………………………9
2.3 Morphology comparison……………………………………………………..9
2.4 Histology……………………………………………………………………10
2.4.1 Paraffin sections…………………………………………………..…10
2.4.2 Hematoxylin and eosin stain…………………………………...……11
2.4.3 Gomori's trichrome stain…………………………………...……..…12
2.4.4 Elastica van Gieson Staining…………………………………….......12
2.5 Phylogenetic analysis……………………………………………………….13
2.5.1 Taxonomic sampling……………………………………………...…14
2.5.2 DNA extraction………………………………………………………14
2.5.3 PCR condition………………………………………………………..16
Result……………………………………………………………………………....…17
3.1 Acoustic signals……………………………………………………….….…17
3.1.2 Pelates quadrilineatus………………………………………………17
3.1.3 Amniataba caudavittatus……………………………………………18
3.1.4 Amniataba percoides………………………………………………..18
3.1.5 Hephaestus fuliginosus……………………………………………...20
3.1.6 Syncomistes butleri………………………………………………….20
3.1.7 Terapon jarbua………………………………………………………20
3.2 Morphology comparison……………………………………………………22
3.2.1 Morphology of acoustic system……………………………………..22
3.2.2 Relative size of sonic muscle………………………………………..23
3.3 Histology……………………………………………………………………24
3.3.1 The characters of sonic muscle fiber………………………………...24
3.3.2 Internal tissue analyze……………………………………………….24
3.4 Phylogenetic analysis…………………………………………………….…25
Discussion……………………………………………………………………………27
4.1 Acoustic signals…………………………………………………………….27
4.1.1 Frequency of sounds production…………………………………….27
4.1.2 Variation in sound characteristics………………………………...…28
4.2 Analysis of sonic structure………………………………………………….29
4.2.1 Analysis of sonic muscle fibers……………………………………..29
4.2.2 Internal tendon………………………………………………………30
4.3 Evolutionary changes…………………………………………………….…31
4.3.1 Phylogenetic analysis………………………………………………..31
4.3.2 Changes in sonic system…………………………………………….32
References……………………………………………………………………………34
Figures Legend
Fig. 1. The sonic muscle, swim bladder and internal tissue of Terapon jabua…39
Fig. 2. The connection of internal tissue and the forth joint of vertebra of Terapon jarbua…40
Fig. 3.The two-chamber swim bladder of Terapon jabua…41
Fig. 4. The theree-chamber swim bladder of Pelates quadrilineatus…42
Fig. 5. Apparatus setup for recording the disturbance hand-held sounds in a Styrofoam box…43
Fig. 6. Sound parameters…44
Fig. 7. The waveform and sonogram of Pelates quadrilineatus…45
Fig. 8. The waveform and sonogram of Amniataba caudavittatus…46
Fig. 9. The waveform and sonogram of Amniataba percoides…47
Fig. 10. The waveform and sonogram of Hephaestus fuliginosus…48
Fig. 11. The waveform and sonogram of Syncomistes butleri…49
Fig. 12. The waveform and sonogram of Terapon jarbua…50
Fig 13. Morphology of acoustic system of Terapontidae…51
Fig 14. Histology sections of sonic muscle…68
Fig 15. The transection of sonic muscle of Bidyanus bidyanus…68
Fig 16. The transection of internal tissue…69
Fig 17. The Neighbor tree of 16s rRNA gene of Terapondae…70
Fig 18. The Neighbor tree of COⅠ gene of Terapondae…71
Fig 19. The literal side and ventral side of the vertebrate of Terapon jarbua…72
Fig. 20. The literal side and ventral side of the vertebrate of Pelates quadrilineatus…73
Fig. 21. The literal side and ventral side of the vertebrate of Scortum barcoo…74
Fig. 22. The literal side and ventral side of the vertebrate of Bidyanus bidyanus…75
Appendix…………………………………………………………………………..…80
參考文獻 References
  Avise, J. C., and D. Ellis. 1986. Mitochondrial DNA and the evolutionary genetics of higher animals. Philosophical Transactions of the Royal Society B: Biological Sciences 312:325-342.
  Burkenroad, M. D. 1931. Notes on the sound-producing marine fishes of Luisiana. Copeia 1931: 20-27.
Chen, S. F., B. Q. Huang, and Chien Y. Y. 1998. Histochemical Characteristics of Sonic Muscle Fibers in Tigerperch, Terapon jarbua. Zoological Studies 37(1):56-62.
  Chen, W. J., C. Bonillo, and G. Lecointre. 2003. Repeatability of clades as a criterion of reliability: a case study for molecular phylogency of Acanthomorpha (Teleostei) with larger number of taxa. Molecular Phylogenetics and Evolution 26:262-288.
  Cohen, M. J., and H. E. Winn. 1967. Electrophysiological observations on hearing and sound production in the fish, Porichthys notatus. Journal of Experimental Zoology. 165:355-370.
  Colson, D. J., S. N. Patek, E. L. Brainerd, and S. M. Lewis. 1998. Sound production during feeding in Hippocampus seahorses (Syngnathidae). Environmental Biology of Fishes 51: 221-229.
  Connaughton, M. A. 2004. Sound generation in the searobin (Prionotus carolinus), a fish with alternate sonic muscle contraction. Journal of Experimental Biology 207:1643-1654.
  Davis, A. M., P. J. Unmack, B. J. Pusey, J. B. Johnson, and R. G. Pearson. 2012. Marine–freshwater transitions are associated with the evolution of dietary diversification in Terapontid grunters (Teleostei: Terapontidae). Journal of Evolutionary Biology 25:1163-1179.
  Demski, L. S., J. W. Gerald, and A. N. Popper. 1973. Central and peripheral mechanisms of teleost sound production. American Zoologist 13:1141-1168.
  Eichelberg, H. 1976. The fine structure of the drum muscle of the Tiger fish, Therapon Jarbua, as compare with the trunk muscle. Cell and Tissue Research 174:453-463.
  Fine, M. L., H. Lin, B. B. Nguyen, R. A. Rountree, T. M. Cameron, and Parmentier, E. 2007. Functional morphology of the sonic apparatus in the fawn cusk-eel Lepophidium profundorum (Gill, 1863). Journal of Morphology 268:953–966.
  Jiang Y.X. 2010. Phylogeny of Pempheridae inferred from sound-producing structure and DNA sequences. National Sun-yet University. Master Thesis. Lee S. C. and M.P. Tsai. 1999. Molecular systematics of the thornfishes genera Terapon and Pelates (Perciformes: Teraponidae) with reference to the new genus Pseudoterapon. Zoological Studies 38(3): 279-286.
  Lichtwark, G. 2005. The role of muscle tendon unit elasticity in real life activities. University of London. Doctor theses.
Lin, Y. C. 2008. Bioacoustic and sonic-muscle proteomics of big-snout croaker (Johnius macrohynus). National Taiwan Ocean University. Doctor Thesis.
  Mitchell, T. L. 1838. Three Expeditions into the Anterior of Eastern Australia: with descriptions of the recently explored region of Australia Felix and of New South Wales. T. & W. Boone, London.
  Modesto, T., A. V. M. Canário. 2006. Hormonal control of swimbladder sonic muscle dimorphism in the Lusitanian toadfish Halobatrachus didactylus. The Journal of Experimental Biology 10:3467-3477.
  Mok, H. K., Parmentier E., Chiu K. H., Tsai K. E., Chiu P. H., and Fine M. L. 2011. An Intermediate in the evolution of superfast sonic muscles. Frontiers in Zoology 8(1):1-8.
  Palumbi, S. R. 1996. Nucleic acids Ⅱ: the polymerase chain reaction. In Hillis, D., C. Moritz, and B. K. Mable, editors. Molecular Systimatics. 2:205-247.
  Parmentier, E., N. Fontenelle, M. L. Fine, P. Vanderwalle, and C. Henrist. 2006a. Functional morphology of the sonic apparatus in Ophidion barbatum (Teleostei, Ophidiidae). Journal of Morphology 267:1461–1468.
  Parmentier, E., J. P. Lagarde`re, J. B. Braquegnier, P. Vandewalle, and M. L. Fine 2006b. Sound production mechanism in carapid fish: first example with a slow sonic muscle. Journal of Experimental Biology 209:2952–2960.
  Parmentier, E., P. Vandewalle, C. Brié, L. Dinraths, and D. Lecchini. 2010. Comparative study on sound production in different Holocentridae species. Frontiers in Zoology 8:1-12.
  Ramcharitara, J., D. P. Gannonb, and A. N. Popper. 2006. Bioacoustics of fishes of the Family Sciaenidae (croakers and drums). Transaction of the American Fisheries Society 135:1409-1431.
  Ripley, J. L., P. S. Lobel, and H. Y. Yan. 2002. Correlation of sound production with hearing sesnsitivity in the Lake Malawi cichlid Tramitichromis intermedius. Bioacoustics 12:238-240.
  Rome, L. C., and S.Lindstedt. 1998. The quest for speed: muscles built for high-frequency contractions. News Physiology 13:261-268.
  Schneider, H. 1964. Physiologische und morphologische Untersuchungen zur Bioakustik der Tigerfische (Pisces, Theraponidae). Zeitschrift für vergleichende Physiologie 47.5: 493-558.
  Skoglund, C. R. 1961. Functional analysis of swim-bladder muscles engaged in sound production of the toadfish. Jounal of Biophys. Biochem 10:187-200.
  Takemura, A., T. Takita, and K. Mizue. 1978. Underwater calls of the Japanese marine drum fishes (Sciaenidae). Bulletin of the Japanese Society of Scientific Fisheries 44:121-125.
  Takamatsu. T, Okumula. T, Novonili. N, Yan. H.Y. 2002, Empirical refinements applicable to the recording of fish sounds in small tanks. The journal of the Acoustical Society of America 112:3073-3082.
  Tavolga, W. N. 1962. Mechanisms of sound production in the Ariid catfishes Galeichthys and Bagre. Bulletin of the American Museum of Natural History 124:1-30.
  Tavolga, W. N. 1964. Sonic characteristics and mechanisms in marine fishes. In Marine Bioacoustics 1:195-211.
  Tellechea, J. S., W. Norbis, D. Olsson, and M. L. Fine. 2011. Calls of the black drum (Pogonias cromis: Sciaenidae): geographical differences in sound production between Northern and Southern hemisphere populations. Journal of Experimental Zoology 315:48-55.
  Tower, R. W. 1908. The production of sound in the drumfishes, the sea-robin and the toadfish. Annals of the New York Academy of Science 18: 149-180.
  Vari, R.P. 1978. The Terapon perches (Percoidei, Terapontidae), a cladistic analysis and taxonomic revision. Bull. Am. Mus. Natl. Hist. 159(5):175-340.
  Wilson, B., R. S. Batty, and L. M. Dill. 2004. Pacific and Atlantic herring produce burst pulse sounds. Proceedings of the Royal Society B: Biological Sciences 271:95-97.
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:自定論文開放時間 user define
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus: 已公開 available


紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code