Responsive image
博碩士論文 etd-0628114-012430 詳細資訊
Title page for etd-0628114-012430
論文名稱
Title
石墨烯之電子場發射元件
Large-area graphene films for field emission device application
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
77
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2014-06-21
繳交日期
Date of Submission
2014-07-28
關鍵字
Keywords
石墨烯、場發射、深寬比、化學氣相沉積法
aspect ratio, chemical vapor deposition, field emission, graphene
統計
Statistics
本論文已被瀏覽 5684 次,被下載 75
The thesis/dissertation has been browsed 5684 times, has been downloaded 75 times.
中文摘要
自石墨烯發現以來,石墨烯材料具有高電荷傳輸、高導熱係數、穿透率佳、堅韌的機械性質…等獨特物理特性,使石墨烯成為相當有潛力的次世代材料。最近,石墨烯被廣泛的被運用在電子元件、光電元件、感測器、奈米複合材料和儲能裝置。
本研究分為兩大主軸,場發射源-石墨烯的成長與探討不同層數石墨烯的場發射性質。第一,在石墨烯的成長及材料分析方面,化學氣相沉積法成長大面積的石墨烯在銅箔上,以堆疊的方式讓單層石墨烯形成多層石墨烯,並利用拉曼光譜、電子顯微鏡,探討不同層數的石墨烯的材料特性。在實際分析上,拉曼光譜為碳材料相當重要的分析工具,不僅能快速且無破壞性的量測碳材料上的結構及缺陷,甚至能判斷石墨烯的層數,對於各層數石墨烯的晶體結構、表面型態及電導率分析完後,在進行場發射量測。
第二,在探討石墨烯的電子場發射特性前,發現化學氣相沉積法製備的石墨烯過於平坦,使石墨烯原本具備的奈米結構的深寬比特性很差,若表面深寬比過低,很難形成場發射電流,為了增加表面深寬比 (aspect ratio),在場發射量測方面,本研究利用1、2、3、5層石墨烯,探討不同層數氬電漿處理前與處理後的石墨烯的場發射特性,發現與原生石墨烯比較氬電漿功率在40W時,其起始電場 (turn-on field) 從7.8 V⁄μm降至6.2 V⁄μm,且場增強因子β從1154上升至2089,顯示氬電漿處理後的石墨烯擁有相當良好的場發射性質。
Abstract
Since graphene was discovered by K. S. Novoselov and A.K. Geim. Graphene has unique physical properties, such as exceptional charge transport , thermal, optical, and mechanical properties make graphene a promising material for nano-electronics. In Recent, graphene-based materials has attracted great attention in various application, such as electronic and optoelectronic devices, sensors, nanocomposites and energy storage devices.
In this work, field emission material, graphene was synthesized by using chemical vapor deposition method (CVD) which shows the obvious advantages of low cost and easy for scale-up production. Few-layer was synthesized by stacking monolayer graphene. The material characteristic is measured by four-point probe, scanning electron microscope (SEM), Raman spectroscopy.
The morphology of samples is studied by scanning electron microscope (SEM), the sheet resistance and conductivity is measured by four-point probe. Raman spectroscopy is a powerful tool to characterize the different types of carbon material, can quick and non-destructive measure carbon material.
Graphene is analyzed the number of layers, quality and crystal structures by Raman spectroscopy. Before investigate the electron field emission properties of graphene, Analysis of SEM discovered graphene films without high aspect ratio. Field emission electrons is difficult to tunneling barrier. In this work, using Ar plasma treatment to improve surface morphology of graphene. The graphene using Ar plasma treatment exhibits better emission capability, characterized by turn-on fields as low as 6.2 V⁄μm and field amplification factors up to 2089.
目次 Table of Contents
致謝 ii
摘要 iii
Abstract iv
目錄 v
圖目錄 vii
表目錄 x
第 1 章 緒論 1
1.1 文獻回顧 1
1.1.1 石墨烯簡介 1
1.1.2 石墨烯製備方法 2
1.1.3 石墨烯應用於場發射元件 10
1.2 研究動機 15
1.3 研究方法與論文架構 16
第 2 章 原理 17
2.1 石墨烯的理論 17
2.1.1 單層石墨烯基礎理論 17
2.1.2 電子傳輸特性 19
2.1.3 光學特性 20
2.1.4 雙層與多層石墨烯結構 21
2.2 電子發射理論 23
2.2.1 電子發射型態 23
2.2.2 Fowler-Nordheim theory 23
2.3 儀器原理 25
2.3.1 製程儀器 25
2.3.2 量測儀器 31
第 3 章 實驗流程 42
3.1 石墨烯製備 42
3.1.1 基板清洗 42
3.1.2 沉積石墨烯 43
3.2 元件製成步驟 45
3.2.1 上板製作(接收端) 45
3.2.2 下板製作(發射端) 46
3.3 場發射元件量測 47
3.3.1 電性量測 47
3.3.2 光性量測 47
第 4 章 實驗結果 48
4.1 材料分析 48
4.1.1 拉曼光譜分析 48
4.1.2 電子顯微鏡分析(SEM) 52
4.2 場發射實驗 54
4.3 透明電極 59
4.4 場發射發光特性 59
第 5 章 結論 60
參考文獻 61
參考文獻 References
[1] H. P. Boehm, A. Clauss, G. O. Fischer and U. Hofmann, "Das Adsorptionsverhalten sehr dünner Kohlenstoff-Folien," Zeitschrift für anorganische und allgemeine Chemie, vol. 316, pp. 119-127, Jul. 1962.
[2] A. K. Geim , K. S. Novoselov, "The rise of graphene," Nature Materials, vol. 6, pp. 183-191, 2007.
[3] Wonbong Choi, Indranil Lahiri, Raghunandan Seelaboyina, Yong Soo Kang, "Synthesis of Graphene and Its Applications: A Review," Critical Reviews in Solid State and Materials Sciences, vol. 35, pp. 52-71, Feb. 2010.
[4] Virendra Singh, Daeha Joung, Lei Zhai, Soumen Das, Saiful I. Khondaker, Sudipta Seal, "Graphene based materials: Past, present and future," Progress in Materials Science, vol. 56, pp. 1178-1271, Oct. 2011.
[5] K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva, A. A. Firsov, "Electric field effect in atomically thin carbon films," Science, vol. 306, pp. 666 - 669, Jul. 2004.
[6] Sasha Stankovich, Dmitriy A. Dikin, Geoffrey H. B. Dommett, Kevin M. Kohlhaas, Eric J. Zimney,Eric A. Stach, Richard D. Piner, SonBinh T. Nguyen, Rodney S. Ruoff, "Graphene-based composite materials," Nature, vol. 442, pp. 282-286, Jul. 2006.
[7] Xuesong Li, Weiwei Cai, Jinho An, Seyoung Kim, Junghyo Nah, Dongxing Yang, Richard Piner, Aruna Velamakanni, Inhwa Jung, Emanuel Tutuc, Sanjay K. Banerjee, Luigi Colombo, Rodney S. Ruoff, "Large-Area Synthesis of High-Quality and Uniform Graphene Films on Copper Foils," Science, vol. 5, pp. 1312-1314, May 2009.
[8] Keun Soo Kim, Yue Zhao, Houk Jang, Sang Yoon Lee, Jong Min Kim, Kwang S. Kim, Jong-Hyun Ahn, Philip Kim, Jae-Young Choi and Byung Hee Hong, "Large-scale pattern growth of graphene films for stretchable transparent electrodes," Nature, vol. 5, pp. 706-710, Feb. 2009.
[9] Ching-Yuan Su, Ang-Yu Lu, Yanping Xu, Fu-Rong Chen, Andrei N. Khlobystov, Lain-Jong Li, "High-Quality Thin Graphene Films from Fast Electrochemical Exfoliation," ACS NANO, vol. 5, pp. 2332-2339, Nov. 2011.
[10] C.T.J. Low, F.C. Walsh, M.H. Chakrabarti, M.A. Hashim, M.A. Hussain, "Electrochemical approaches to the production of graphene flakes and their potential applications," CARBON, vol. 54, p. 1–21, Apr. 2013.
[11] Sungjin Park, Rodney S. Ruoff, "Chemical methods for the production of graphenes," nature nanotechnology, vol. 4, pp. 217 - 224, Mar. 2009.
[12] Prakash R. Somani, Savita P. Somani, Masayoshi Umeno, "Planer nano-graphenes from camphor by CVD," Chemical Physics Letters, vol. 430, pp. 56-59, Jun. 2006.
[13] A.N. Obraztsov, E.A. Obraztsova, A.V. Tyurnina, A.A. Zolotukhin, "Chemical vapor deposition of thin graphite films of nanometer thickness," Carbon, vol. 45, p. 2017–2021, Jun. 2007.
[14] Qingkai Yu1, Jie Lian, Sujitra Siriponglert, Hao Li, Yong P. Chen and Shin-Shem Pei, "Graphene segregated on Ni surfaces and transferred to insulators," Appl. Phys. Lett., vol. 93, p. 113103, Sep. 2008.
[15] Sukang Bae, Hyeongkeun Kim, Youngbin Lee, Xiangfan Xu, Jae-Sung Park, Yi Zheng, "Roll-to-roll production of 30-inch graphene films for transparent electrodes," NATURE NANOTECHNOLOGY, vol. 5, pp. 574-578, Jun. 2010.
[16] Yuanbo Zhang, Joshua P. Small, William V. Pontius, and Philip Kim, "Fabrication and electric-field-dependent transport measurements of," Appl. Phys. Lett., vol. 86, p. 073104, Feb. 2005.
[17] Sivudu KS, Mahajan YR., "Challenges and opportunities for the mass production of high quality graphene: an analysis of worldwide patents.," Nanotech Insights, vol. 3, pp. 6-19, 2013.
[18] Claire Berger, Zhimin Song, Xuebin Li, Xiaosong Wu, Nate Brown, Cécile Naud, Didier Mayou, Tianbo Li, Joanna Hass, Alexei N. Marchenkov, Edward H. Conrad, Phillip N. First, Walt A. de Heer, "electronic Confinement and Coherence in Patterned Epitaxial Graphene," Science, vol. 312, pp. 1191-1196, May 2006.
[19] Yenny Hernandez, Valeria Nicolosi, Mustafa Lotya, Fiona M. Blighe, Zhenyu Sun, Sukanta De, I. T. McGovern, Brendan Holland, Michele Byrne, Yurii K. Gun'Ko, John J. Boland, Peter Niraj, Georg Duesberg, Satheesh Krishnamurthy, Robbie Goodhue, John Hutchison, "High-yield production of graphene by liquid-phase exfoliation of graphite," Nature Nanotechnology, pp. 563-568, Aug. 2008.
[20] Chenggang Tao, Liying Jiao, Oleg V. Yazyev,Yen-Chia Chen, Juanjuan Feng, Xiaowei Zhang,Rodrigo B. Capaz, James M. Tour, Alex Zettl, Steven G. Louie, Hongjie Dai and Michael F. Crommie, "Spatially resolving edge states of chiral graphene nanoribbons," Nature Physics, vol. 7, pp. 616-620, May 2011.
[21] Sigen Wang, Jianjun Wang, Peter Miraldo, Mingyao Zhu, Ronald Outlaw et al., "High field emission reproducibility and stability of carbon nanosheets and nanosheet-based backgated triode emission devices," Appl. Phys. Lett., vol. 89, p. 183103, Oct. 2006.
[22] Zhong-Shuai Wu, Songfeng Pei, Wencai Ren, Daiming Tang, Libo Gao, Bilu Liu, Feng Li, Chang Liu andHui-Ming Cheng, "Field Emission of Single-Layer Graphene Films Prepared by Electrophoretic Deposition," Advanced Materials, vol. 21, pp. 1756-1760, May 2009.
[23] Zhiming Xiao, Juncong She, Shaozhi Deng, Zikang Tang, Zhibing Li, Jianming Lu and Ningsheng Xu, "Field Electron Emission Characteristics and Physical Mechanism of Individual Single-Layer Graphene," ACS Nano, vol. 4, pp. 6332-6336, Oct. 2010.
[24] Cheng-Kuang Huang, Yongxi Ou, Yaqing Bie, Qing Zhao and Dapeng Yu, "Well-aligned graphene arrays for field emission displays," Appl. Phys. Lett., vol. 98, p. 263104, Jun. 2011.
[25] Zhicheng Yang, Qing Zhao, Yongxi Ou, Wei Wang, Heng Li et al., "Enhanced field emission from large scale uniform monolayer graphene supported by well-aligned ZnO nanowire arrays," Appl. Phys. Lett., vol. 101, p. 173107, Oct. 2012.
[26] Xianlong Wei , Yoshio Bando and Dmitri Golberg, "Electron Emission from Individual Graphene Nanoribbons Driven by Internal Electric Field," ACS Nano, vol. 6, pp. 705-711, Nov. 2012.
[27] Alexander Malesevic, Raymond Kemps, Annick Vanhulsel, Manish Pal Chowdhury, Alexander Volodin et al., "Field emission from vertically aligned few-layer graphene," J. Appl. Phys., vol. 104, p. 084301, Oct. 2008.
[28] Mohd Zamri Yusop, Golap Kalita, Yazid Yaakob, Chisato Takahashi and Masaki Tanemura, "Field emission properties of chemical vapor deposited individual graphene," Applied Physics Letters, vol. 104, p. 093501, Mar. 2014.
[29] Navneet Soin, Susanta Sinha Roy, Soumyendu Roy, Kiran Shankar Hazra, Devi S. Misra, Teck H. Lim, Crispin J. Hetherington and James A. McLaughlin, "Enhanced and Stable Field Emission from in Situ Nitrogen-Doped Few-Layered Graphene Nanoflakes," J. Phys. Chem. C, vol. 115, pp. 5366-5372, Mar. 2011.
[30] S. Santandrea, F. Giubileo, V. Grossi, S. Santucci, M. Passacantando et al., "Field emission from single and few-layer graphene flakes," Appl. Phys. Lett., vol. 98, p. 163109, Apr. 2011.
[31] R. H. Fowler and L. Nordheim, "Electron Emission in Intense Electric Fields," Proc. R. Soc. Lond. A, vol. 119, pp. 173-181, May 1928.
[32] A. H. Castro Neto, F. Guinea, N. M. R. Peres, K. S. Novoselov and A. K. Geim, "The electronic properties of graphene," REVIEWS OF MODERN PHYSICS, vol. 81, pp. 109-162, Jan. 2009.
[33] L. G. Cançado, A. Reina,J. Kong and M. S. Dresselhaus, "Geometrical approach for the study of G'band in the Raman spectrum of monolayer graphene,bilayer graphene, and bulk graphite," PHYSICAL REVIEW B, vol. 77, p. 245408, Jun. 2008.
[34] N. Peres, "The electronic properties of graphene and its bilayer," Vacuum, vol. 83, pp. 1248-1252, Jun. 2009.
[35] F. Bonaccorso, Z. Sun, T. Hasan and A. C. Ferrari, "Graphene photonics and optoelectronics," Nature Photonics, vol. 4, pp. 611-622, Aug. 2010.
[36] R. R. Nair, P. Blake, A. N. Grigorenko, K. S. Novoselov, T. J. Booth, T. Stauber, N. M. R. Peres, A. K. Geim, "Fine Structure Constant Defines Visual Transparency of Graphene," Science, vol. 320, p. 1308, Apr. 2008.
[37] Sylvain Latil and Luc Henrard, "Charge Carriers in Few-Layer Graphene Films," PRL, vol. 97, p. 036803, Jul. 2006.
[38] Mauricio Terrones, Andrés R. Botello-Méndez, Jessica Campos-Delgado, Florentino López-Urías, Yadira I. Vega-Cantú, Fernando J. Rodríguez-Macías, Ana Laura Elías, Emilio Mu˜noz-Sandoval, Abraham G. Cano-Márquez, Jean-Christophe Charlier, Humberto Terrones, "Graphene and graphite nanoribbons: Morphology,properties, synthesis, defects and applications," Nano Today, vol. 5, pp. 351-372, Aug. 2010.
[39] 蕭宏, 半導體製程技術導論, 歐亞書局, 2001.
[40] Sreekar Bhaviripudi, Xiaoting Jia, Mildred S. Dresselhaus and Jing Kong, "Role of Kinetic Factors in Chemical Vapor Deposition Synthesis of Uniform Large Area Graphene Using Copper Catalyst," Nano Lett., vol. 10, pp. 4128-4133, Sep. 2010.
[41] lan R.Lewis, Howell G.M. Edwards, Handbook of Raman Spectroscopy, Taylor & Francis, 2001.
[42] Zhenhua Ni, Yingying Wang, Ting Yu, and Zexiang Shen, "Raman Spectroscopy and Imaging of Graphene," Nano Res, vol. 1, pp. 273-291, Aug. 2008.
[43] M. A. Pimenta, G. Dresselhaus, M. S. Dresselhaus, L. G. Canc¸ado, A. Jorio and R. Saito, "Studying disorder in graphite-based systems by Raman spectroscopy," Physical Chemistry Chemical Physics, vol. 9, pp. 1276-1290, Jan. 2007.
[44] A. C. Ferrari, "Raman spectroscopy of graphene and graphite: Disorder, electron–phonon coupling, doping and nonadiabatic effects," Solid State Communications, vol. 143, pp. 45-57, Apr. 2007.
[45] A. C. Ferrari, J. C. Meyer, V. Scardaci, C. Casiraghi, M. Lazzeri, F. Mauri, S. Piscanec, D. Jiang, K. S. Novoselov, S. Roth and A. K. Geim, "Raman Spectrum of Graphene and Graphene Layers," Phys. Rev. Lett., vol. 97, p. 187401, Oct. 2006.
[46] L.M. Malard, M.A. Pimenta, G. Dresselhaus, M.S. Dresselhaus, "Raman spectroscopy in graphene," Physics Reports, vol. 473, pp. 51-87, Apr. 2009.
[47] P. Blake, E. W. Hill, A. H. Castro Neto, K. S. Novoselov, D. Jiang et al., "Making graphene visible," Appl. Phys. Lett., vol. 91, p. 063124, Aug. 2007.
[48] D. Graf, F. Molitor, K. Ensslin, C. Stampfer, A. Jungen, C. Hierold, L. Wirtz, "Spatially Resolved Raman Spectroscopy of Single- and Few-Layer Graphene," NANO LETTERS, vol. 7, pp. 238-242, Oct. 2007.
[49] Ying ying Wang, Zhen hua Ni, Ting Yu, Ze Xiang Shen, Hao min Wang, Yi hong Wu, Wei Chen and Andrew Thye Shen Wee, "Raman Studies of Monolayer Graphene: The Substrate Effect," J. Phys. Chem. C, vol. 112, pp. 10637-10640, Apr. 2008.
[50] Nicola Ferralis, Roya Maboudian, and Carlo Carraro, "Evidence of Structural Strain in Epitaxial Graphene Layers on 6H-SiC(0001)," PHYSICAL REVIEW LETTERS, vol. 101, p. 156801, Oct. 2008.
[51] Zhen Hua Ni , Ting Yu , Yun Hao Lu , Ying Ying Wang , Yuan Ping Feng and Ze Xiang Shen, "Uniaxial Strain on Graphene: Raman Spectroscopy Study and Band-Gap Opening," ACS Nano, vol. 2, pp. 2301-2305, Oct. 2008.
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:自定論文開放時間 user define
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus: 已公開 available


紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code