Responsive image
博碩士論文 etd-0628114-100706 詳細資訊
Title page for etd-0628114-100706
論文名稱
Title
以能量轉移機制來發展半導體高分子奈米顆粒,並應用於分析感測器上
Applications of Semiconducting Polymer Dots in Sensing via FRET Strategy
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
110
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2014-06-23
繳交日期
Date of Submission
2014-07-28
關鍵字
Keywords
螢光能量共振轉移、光控分子、螢光訊號比例、半導體高分子奈米顆粒、比色法、聚二乙炔、近紅外光、銅離子
Förster resonance energy transfer, Bioimaging, Polydiacetylene, Near-infrared, Fluorescent probe, Spiropyran, merocyanine, ratiometric, Semiconducting Polymer Dots
統計
Statistics
本論文已被瀏覽 5650 次,被下載 1161
The thesis/dissertation has been browsed 5650 times, has been downloaded 1161 times.
中文摘要
本篇研究利用半導體高分子奈米顆粒(Semiconducting Polymer Dots,Pdots)具良好的光學特性,並且含高能量傳遞的優點來設計分析感測器。除此之外,結合FRET (Förster resonance energy transfer)能量傳遞發展以半導體高分子奈米顆粒為主體做不同的探討與應用,在此作的應用分別為金屬離子的偵測,以及製備具近紅外光特性的螢光探針。

(一)修飾上光控分子的半導體高分子奈米顆粒以螢光訊號比例的方式,對銅離子做偵測:
銅離子是人體含量前三多的金屬離子之一,含量過多會導致肝硬化,嚴重甚至是死亡,但含量過少則會引發貧血、骨質酥鬆等症狀,所以銅離子的偵測非常重要。在此研究中,我們分別選擇PPE和PFBT這兩種Pdots,利用兩者之間能產生有效的FRET能量傳遞,並在Pdots上修飾可以抓取銅離子的光控分子(spiropyran,SP),SP為一種光控分子,照射UV光源時會形成merocyanine (MC)結構,而MC照射白光則會變回SP。另外,以SP (spiropyran)上的COOH和CO520鍵結合成SP-CO520,然後以再沉澱法和Pdots結合,由於CO520的結構為一端疏水性一端親水性,所以合成的SP-CO520-PPE和SP-CO520-PFBT,就會以CO520的疏水端部分往Pdots內部,而CO520上的PEG為親水端,則迫使SP在Pdots外部。由於SP結構上的碳鍊長度所造成的空間大小最吻合銅離子,所以只需要簡單改變光源即可對銅離子具選擇性偵測,除此之外,以螢光訊號比例的方式作探討,設計出簡單又方便的偵測系統。

(二)發展polydiacetylene包覆近紅外光半導體高分子奈米顆粒,並應用在生物影像以及感測器:
由於Near-infrared (NIR,650 nm-900 nm) 放光具有高穿透性、對生物體傷害小、低背景干擾等優點,所以為科學家目前致力發展的目標。本研究利用PFBT-DBT Pdots包覆NIR染劑,使PFBT-DBT透過FRET傳能量給NIR染劑,而讓Pdots放光由650 nm改變到NIR範圍。首先,測試九種不同NIR 染劑,得到FRET效果較好的三個染劑 (NIR653、NIR695、NIR775),再由螢光光譜結果,選擇NIR695及NIR775去做進一步探討,分別藉由有無包覆polydiacetylene (聚二乙炔,PDA) 以及浸泡至37℃來測試穩定性。結果顯示,有PDA包覆,使NIR-emitting Pdots在37℃下浸泡24小時,NIR染劑還是良好存在Pdots中。後續,使用HeLa cell (子宮頸癌細胞) 進行內吞作用,可得知在酸性狀態下不會破壞螢光訊號,此外,利用PDA上的COOH官能基來進行bioconjugation,成功標記在MCF-7 cell (乳癌細胞) 表面。最後,利用PDA具有比色法 (colorimetry) 的特性來製備試紙,原本呈現藍色的試紙在90oC則變成紅色。綜合以上,本研究具備了螢光以及比色法 (colorimetry) 的雙偵測優勢。
Abstract
1.Photoactivated ratiometric copper(II) ion sensing with semiconducting polymer dots
This paper describes a simple platform that employs spiropyran-functionalized
semiconducting polymer dots as a fluorescent probe for photoactivated ratiometric and sensitive Cu2+ detection, in which the sensing mechanism is based on photogenerated merocyanine that can selectively bind Cu2+ to induce Förster resonance energy transfer.

2. Polydiacetylene-Enclosed Near-Infrared Fluorescent Semiconducting
Polymer Dots for Bioimaging and Sensing
Semiconducting polymer dots (Pdots) recently have emerged as a new type of ultrabright fluorescent probe with promising applications in biological imaging and
detection. With the increasing desire for near-infrared (NIR) fluorescing probes for in vivo biological measurements, the currently available NIR-emitting Pdots are very limited and the leaching of the encapsulated dyes/polymers has usually been a concern. To address this challenge, we first embedded the NIR dyes into the matrix of poly [(9, 9 -dioctylfluorene)-co-2,1,3-benzothiadiazole-co-4,7-di(thiophen-2-yl)-2,1,3-benzothiadiazole] (PFBT-DBT) polymer and then enclosed the doped Pdots with polydiacetylenes (PDAs) to avoid potential leakage of the entrapped NIR dyes from the Pdot matrix. These PDA-enclosed NIR-emitting Pdots not only emitted much stronger NIR fluorescence than conventional organic molecules but also exhibited enhanced photostability over CdTe quantum dots, free NIR dyes, and gold nanoclusters. We next conjugated biomolecules onto the surface of the resulting Pdots and demonstrated their capability for specific cellular labeling without any noticeable nonspecific binding. To employ this new class of material as a facile sensing platform, an easy-to-prepare test paper, obtained by soaking the paper into the PDA-enclosed NIR emitting Pdot solution, was used to sense external stimuli such as ions, temperature, or pH, depending on the surface functionalization of PDAs. We believe these PDA-coated NIR-fluorescing Pdots will be very useful in a variety of bioimaging and analytical applications.
目次 Table of Contents
誌謝…………………………………………………………………...…………..……..i
中文摘要………………………………………….…………………..……………..….ii
英文摘要……………………………………………………………..…………..…….iv
目錄………………………………………………………………….…….…...………vi
圖目錄……………………………………………………………….…….…...………ix
表目錄……………………………………………………………….………...…..…...xv
縮寫表……………………………………………………………….………...…..…...xv

第一章、 緒論………………………………………………………………………….1
一、前言……………………………………………………………………….………...1
1-1.歷史發展…………………………………………………………………….………1
1-2.製備方式………………………………………………………………….………..11
1-3.應用………………………………………………………………………….……..12
1-3-1.離子偵測……………………………………………………….….......………..13
1-3-2.生物偵測……………………………………………………….….………........14
1-3-3.生物影像………………………………………………………………….......…14
1-4.螢光共振能量轉移 (Förster resonance energy transfer,FRET)…….......... 15
二、研究動機…………………………………………………………………………..20

第二章、半導體高分子奈米顆粒以光活化且螢光訊號比例的方式,對銅離子做偵測
一、前言………………………………….………………………………...…..……….21
二、實驗部分
2-1.實驗藥品……………………………………….……………………………...…...22
2-2.儀器裝置…………………………………………………………………………...24
2-3.樣品配製方法……………………………………………………………………...25
2-4.實驗步驟…………………………………………………………………………...26
三、實驗設計及原理…………………………………………………………………..29
四、實驗結果與討論
4-1.偵測系統的檢測…………………………………………………………………...32
4-2.半導體高分子奈米顆粒的尺寸…………………………………………………...34
4-3.以螢光檢測不同銅離子濃度……………………………………………………...36
4-4.選擇性……………………………………………………………………………...38
4-5.偵測系統的可逆性研究…………………………………………………………...39
4-6. Förster radius及FRET效率的計算………………………………………………40
4-7.真實樣品…………………………………………………………………………...42
五、結論………………………………………………………………………………..42

第三章、發展polydiacetylene包覆近紅外光半導體高分子奈米顆粒,並應用在生物 影像以及感測器
一、 前言……………………………………………………………………….……....43
二、 實驗部分
2-1.實驗藥品………………………………………………………….……….……….47
2-2.儀器裝置…………………………………………………………………….……..50
2-3.樣品配製方法……………………………………………………………….….….52
2-4.實驗步驟………………………….………………………………………….….…54
三、實驗設計及原理………………………………………………………….….……60
四、實驗結果與討論
4-1.選擇半導體高分子奈米顆粒以及NIR染劑……………………………………....62
4-2. PFBT-DBT與NIR染劑的光學性質及奈米顆粒尺寸 ...................................64
4-3.探討NIR染劑的含量................................................................................66
4-4. Polydiacetylene的包覆效率....................................................................68
4-5.修飾上diacetylene的NIR半導體高分子奈米顆粒之穩定性測試....................69
4-6.螢光量子產率的探討...............................................................................73
4-7. Förster radius及FRET效率的計算 ...........................................................76
4-8. NIR695-PFBT-DBT半導體高分子奈米顆粒的螢光生命期...........................78
4-9. NIR695-PFBT-DBT半導體高分子奈米顆粒的光穩定性...............................79
4-10.PDA包覆0.75% NIR695-PFBT-DBT半導體高分子奈米顆粒在生物體系的應用 ....................................................................................................................80
4-10-1. 細胞內吞作用 (Endocytosis)...........................................................80
4-10-2. 細胞特異性標記 (Specific cellular targeting).....................................81
4-10-3. 製備偵測型試紙 83
五、結論……………………………………….……………. ..….……………...……84

第四章、參考文獻……………………………………….…….….……………...…...85
參考文獻 References
[1]Wu, C.; Szymanski, C.; McNeill, J. Preparation and Encapsulation of Highly
Fluorescent Conjugated Polymer Nanoparticles . Langmuir 2006, 22, 2956.
[2]Wu, C.; Bull, B.; Szymanski, C.; Christensen, K.; McNeill, J. Multicolor
Conjugated Polymer Dots for Biological Fluorescence Imaging. ACS Nano
2008, 2, 2415.
[3]Wu, C.; Schneider, T.; Zeigler, M.; Yu, J.; Schiro, P. G.; Burnham, D. R.;
McNeill, J. D.; Chiu, D. T. Bioconjugation of Ultrabright Semiconducting Polymer
Dots for Specific Cellular Targeting. J. Am. Chem. Soc 2010, 132, 15410.
[4]Wu, C.; Hansen, S. J.; Hou, Q.; Yu, J.; Zeigler, M.; Jin, Y.; Burnham, D. R.;
McNeill, J. D.; Olson, J. M.; Chiu, D. T. Design of Highly Emissive Polymer Dot
Bioconjugates for In Vivo Tumor Targeting. Ange. Chem., Int. Ed. 2011, 50,
3430.
[5]Wu, C.; Chiu, D. T. Highly Fluorescent Semiconducting Polymer Dots for
Biology and Medicine. Ange. Chem., Int. Ed. 2013, 52, 3086.
[6]Zhu, C.; Liu, L.; Yang, Q.; Lv, F.; Wang, S. Water-Soluble Conjugated
Polymers for Imaging, Diagnosis, and Therapy. Chem. Rev. 2012, 112, 4687.
[7]Feng, X.; Liu, L.; Wang, S.; Zhu, D. Water-soluble fluorescent conjugated
polymers and their interactions with biomacromolecules for sensitive
biosensors. Chem. Soc. Rev. 2010, 39, 2411.
[8]Childress, E. S.; Roberts, C. A.; Sherwood, D. Y.; LeGuyader, C. L. M.;
Harbron, E. J. Ratiometric Fluorescence Detection of Mercury Ions in Water by
Conjugated Polymer Nanoparticles. Anal. Chem. 2012, 84, 1235.
[9]Cordovilla, C.; Swager, T. M. Strain Release in Organic Photonic Nanoparticles
for Protease Sensing. J. Am. Chem. Soc 2012, 134, 6932.
[10]Kim, S.; Lim, C.-K.; Na, J.; Lee, Y.-D.; Kim, K.; Choi, K.; Leary, J. F.; Kwon,
I. C. Conjugated polymer nanoparticles for biomedical in vivo imaging. Chem.
Commun. 2010, 46, 1617.
[11]Sahoo, H. Förster resonance energy transfer – A spectroscopic nanoruler:
Principle and Applications. J. Photochem. Photobiol. C-Photochem. Rev. 2011,
12, 20.
[12]Trumbo, P.; Yates, A. A.; Schlicker, S.; Poos, M. Dietary reference intakes:
vitamin A, vitamin K, arsenic, boron, chromium, copper, iodine, iron,
manganese, molybdenum, nickel, silicon, vanadium, and zinc. J Am Diet
Assoc. 2001, 101, 294.
[13] http://whqlibdoc.who.int/publications/2011/9789241548151_eng.pdf
(accessed October 26, 2012)
[14]Que, E. L.; Domaille, D. W.; Chang, C. Metals in Neurobiology: Probing Their
Chemistry and Biology with Molecular Imaging. J. Chem. Rev. 2008, 108,
1517.
[15]Lan, G. Y.; Huang, C. C.; Chang, H. T. Silver nanoclusters as fluorescent
probes for selective and sensitive detection of copper ions. Chem.
Commun.2010, 46, 1257.
[16]Chan, Y. H.; Chen, J.; Liu, Q.; Wark, S. E.; Son, D. H.; Batteas, J. D.
Ultrasensitive Copper(II) Detection Using Plasmon-Enhanced and Photo-
Brightened Luminescence of CdSe Quantum Dots. Anal. Chem. 2010, 82,
3671.
[17]Tian, Z.; Yu, J.; Wu, C.; Szymanski, C.; McNeill, J. Amplified energy transfer
in conjugated polymer nanoparticle tags and sensors. Nanoscale 2010, 2,
1999.
[18]Li, K.; Liu, B. Polymer encapsulated conjugated polymer nanoparticles for
fluorescence bioimaging. J. Mater. Chem. 2012, 22, 1257.
[19]Chan, Y. H.; Wu, C.; Ye, F.; Jin, Y.; Smith, P. B.; Chiu, D. T. Development of
Ultrabright Semiconducting Polymer Dots for Ratiometric pH Sensing. Anal.
Chem. 2011, 83, 1448.
[20]Ye, F.; Wu, C.; Jin, Y.; Chan, Y. H.; Zhang, X.; Chiu, D. T. Ratiometric
Temperature Sensing with Semiconducting Polymer Dots. J. Am. Chem. Soc
2011, 133, 8146.
[21]Radu, A.; Scarmagnani, S.; Byrne, R.; Slater, C.; Lau, K. T.; Diamond, D.
Photonic modulation of surface properties: a novel concept in chemical sensing
J. Phys. D: Appl. Phys., 2007, 40, 7238.
[22]Liu, D.; Chen, W.; Sun, K.; Deng, K.; Zhang, W.; Wang, Z.; Jiang, X.
Resettable, Multi-Readout Logic Gates Based on Controllably Reversible
Aggregation of Gold Nanoparticles. Angew. Chem., Int. Ed. 2011, 50, 4103.
[23]Chan, Y. H.; Gallina, M. E.; Zhang, X.; Wu, I. C.; Jin, Y.; Sun, W.; Chiu, D. T.
Reversible Photoswitching of Spiropyran-Conjugated Semiconducting Polymer
Dots. Anal. Chem. 2012, 84, 9431.
[24]Raymo, F. M.; Giordani, S. Signal Processing at the Molecular Level. J. Am.
Chem. Soc 2001, 123, 4651.
[25]Rubinson, E. H.; Gowda, A. S. P.; Spratt, T. E.; Gold, B.; Eichman, B. F. An
unprecedented nucleic acid capture mechanism for excision of DNA damage.
Nature 2010, 468, 406.
[26]Rosenfeld, N.; Young, J. W.; Alon, U.; Swain, P. S.; Elowitz, M. B. Gene
Regulation at the Single-Cell Level. Science 2005, 307, 1962.
[27]Kotecha, N.; Flores, N. J.; Irish, J. M.; Simonds, E. F.; Sakai, D. S.;
Archambeault, S.; Diaz-Flores, E.; Coram, M.; Shannon, K. M.; Nolan, G. P.;
Loh, M. L. Single-Cell Profiling Identifies Aberrant STAT5 Activation in Myeloid
Malignancies with Specific Clinical and Biologic Correlates. Cancer Cell 2005,
14, 335.
[28]Frangioni, J. V. New Technologies for Human Cancer Imaging. J. Clin. Oncol.
2008, 26, 4012
[29]Jin, Y.; Ye, F.; Zeigler, M.; Wu, C.; Chiu, D. T. Near-infrared fluorescent dye-
doped semiconducting polymer dots. ACS Nano 2011, 5, 1468.
[30]Yuan, L.; Lin, W.; Zhao, S.; Gao, W.; Chen, B.; He, L.; Zhu, S. A Unique
Approach to Development of Near-Infrared Fluorescent Sensors for in Vivo
Imaging. J. Am. Chem. Soc. 2012, 134, 13510.
[31]Mader, H. S.; Kele, P.; Saleh, S. M.; Wolfbeis, O. S. Upconverting
luminescent nanoparticles for use in bioconjugation and bioimaging. Curr. Opin.
Chem. Biol. 2010, 14, 582.
[32]Medintz, I. L.; Uyeda, H. T.; Goldman, E. R.; Mattoussi, H. Quantum dot
bioconjugates for imaging, labelling and sensing. Nat. Mater. 2005, 4, 435.
[33]Somers, R. C.; Bawendi, M. G.; Nocera, D. G. CdSe nanocrystal based
chem-/bio- sensors. Chem. Soc. Rev. 2007, 36, 579.
[34]Choi, H. S.; Liu, W.; Misra, P.; Tanaka, E.; Zimmer, J. P.; Ipe, B. I.; Bawendi,
M. G.; Frangioni, J. V. Nat. Renal clearance of quantum dots. Biotechnol.
2007, 25, 1165.
[35]Michalet, X.; Pinaud, F. F.; Bentolila, L. A.; Tsay, J. M.; Doose, S.; Li, J. J.;
Sundaresan, G.; Wu, A. M.; Gambhir, S. S.; Weiss, S. Quantum Dots for Live
Cells, in Vivo Imaging, and Diagnostics. Science 2005, 307, 538.
[36]Derfus, A. M.; Chan, W. C. W.; Bhatia, S. N. Probing the Cytotoxicity of
Semiconductor Quantum Dots. Nano Lett. 2004, 4,11.
[37]Brunetti, V.; Chibli, H.; Fiammengo, R.; Galeone, A.; Malvindi, M. A.; Vecchio,
G.; Cingolani, R.; Nadeau, J. L.; Pompa, P. P. InP/ZnS as a safer alternative
to CdSe/ZnS core/shell quantum dots: in vitro and in vivo toxicity assessment.
Nanoscale 2013, 5, 307.
[38]Krauss, T. D.; Peterson, J. J. Quantum dots: A charge for blinking. Nat.
Mater. 2012, 11, 14
[39]Bottrill, M.; Green, M. Some aspects of quantum dot toxicity. Chem. Commun.
2011, 47, 7039.
[40]Hoshino, A.; Hanada, S.; Yamamoto, K. Toxicity of nanocrystal quantum dots:
the relevance of surface modifications. Arch. Toxicol. 2011, 85, 707.
[41]Ghaderi, S.; Ramesh, B.; Seifalian, A. M. J. Fluorescence nanoparticles
"quantum dots" as drug delivery system and their toxicity: a review. Drug
Targeting 2011,19, 475.
[42]Wu, C.; Jin, Y.; Schneider, T.; Burnham, D. R.; Smith, P. B.; Chiu, D. T.
Ultrabright and Bioorthogonal Labeling of Cellular Targets Using
Semiconducting Polymer Dots and Click Chemistry. Angew. Chem., Int. Ed.
2010, 49, 9436.
[43]Chan, Y. H.; Jin, Y.; Wu, C.; Chiu, D. T. Copper(II) and iron(II) ion sensing
with semiconducting polymer dots. Chem. Commun. 2011,47, 2820.
[44]Harbron, E. J.; Davis, C. M.; Campbell, J. K.; Allred, R. M.; Kovary, M. T.;
Economou, N. J. Photochromic Dye-Doped Conjugated Polymer Nanoparticles:
Photomodulated Emission and Nanoenvironmental Characterization. J. Phys.
Chem. C 2009, 113, 13707.
[45]Yu, J.; Wu, C.; Zhang, X.; Ye, F.; Gallina, M. E.; Rong, Y.; Wu, I.-C.; Sun,
W.; Chan, Y. H.; Chiu, D. T. Stable Functionalization of Small Semiconducting
Polymer Dots via Covalent Cross-Linking and Their Application for Specific
Cellular Imaging. Adv. Mater. 2012, 24, 3498.
[46]Chan, Y. H.; Ye, F.; Gallina, M. E.; Zhang, X.; Jin, Y.; Wu, I. C.; Chiu, D. T.
Hybrid Semiconducting Polymer Dot–Quantum Dot with Narrow-Band
Emission, Near-Infrared Fluorescence, and High Brightness. J. Am. Chem.
Soc. 2012, 134, 7309.
[47]Sun, W.; Hayden, S.; Jin, Y.; Rong, Y.; Yu, J.; Ye, F.; Chan, Y. H.; Zeigler,
M.; Wu, C.; Chiu, D. T. A versatile method for generating semiconducting
polymer dot nanocomposites. Nanoscale 2012, 4, 7246.
[48]Wu, P. J.; Chen, J. L.; Chen, C. P.; Chan, Y. H. Photoactivated ratiometric
copper(II) ion sensing with semiconducting polymer dots. Chem. Commun.
2013, 49, 898.
[49]Reppy, M. A.; Pindzola, B. A. Biosensing with polydiacetylene materials:
structures, optical properties and applications. Chem. Commun. 2007, 4317.
[50]Ahn, D. J.; Chae, E. H.; Lee, G. S.; Shim, H. Y.; Chang, T. E.; Ahn, K. D.;
Kim, J. M. Colorimetric Reversibility of Polydiacetylene Supramolecules Having
Enhanced Hydrogen-Bonding under Thermal and pH Stimuli. J. Am. Chem.
Soc. 2003, 125, 8976.
[51]Yoon, B.; Lee, S.; Kim, J. M. Recent conceptual and technological advances in
polydiacetylene-based supramolecular chemosensors. Chem. Soc. Rev. 2009,
38, 1958.
[52]Carpick, R. W.; Sasaki, D, Y.; Marcus, M, S.; Eriksson, M. A.; Burns, A. R.
Polydiacetylene films: a review of recent investigations into chromogenic
transitions and nanomechanical properties. J. Phys.: Condens. Matter., 2004,
16, R679.
[53]Wu, P. J.; Kuo, S.Y.; Huang, Y. C.; Chen, C. P.; Chan, Y. H. Polydiacetylene-
Enclosed Near-Infrared Fluorescent Semiconducting Polymer Dots for
Bioimaging and Sensing. Anal. Chem. 2014, 86, 4831.
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:自定論文開放時間 user define
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus: 已公開 available


紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code