Responsive image
博碩士論文 etd-0628114-101929 詳細資訊
Title page for etd-0628114-101929
論文名稱
Title
多種樟科植物的甲醇粗萃物的抗口腔癌生物活性評估
Bioactive evaluation of anti-oral cancer effects in methanol crude extracts of several Lauraceae plants
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
58
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2014-07-18
繳交日期
Date of Submission
2014-07-28
關鍵字
Keywords
厚殼桂、口腔癌、抗增生能力、細胞凋亡、活性氧化物
apoptosis, antiproliferation, oral cancer, Cryptocarya, ROS
統計
Statistics
本論文已被瀏覽 5701 次,被下載 81
The thesis/dissertation has been browsed 5701 times, has been downloaded 81 times.
中文摘要
厚殼桂科(Cryptocarya),其天然衍生物有許多生物活性被發表,像是對某些癌症的抗增生作用。然而,厚殼桂天然衍生物卻很少用在口腔癌方面。本論文使用厚殼桂科植物根部的甲醇粗萃物(MECCrt),評估對口腔癌的可能抗增生作用。我們發現MECCrt對於此次實驗所使用的兩株口腔癌細胞Ca9-22和CAL 27,依著藥物劑量在細胞存活率上有顯著性的抑制(p < 0.01)。流式細胞分析儀實驗顯示Ca9-22和CAL 27兩株細胞都出現subG1比例增加,並產生細胞凋亡。深入探討發現在MECCrt處理下細胞內reactive oxygen species (ROS)含量,隨著處理劑量和處理時間增加而增加(p < 0.01)。MECCrt也同時顯著性的降低兩株細胞株的粒線體膜電位 (p < 0.01–0.05)。以結論是:MECCrt具有抗口腔癌的增生能力(proliferation),其機制可能係透過細胞凋亡(apoptosis)、ROS增加以及粒線體膜電位(mitochondrial membrane potential)的去極化(depolarization)。
Abstract
Cryptocarya-derived natural products were reported to have many biological effects such antiproliferation of some cancers. However, the possible antioral cancer effect of Cryptocarya-derived natural products was less addressed. In this study, we firstly the methanol extract of Cryptocarya plant root (MECCrt) to evaluate its potential function of antioral cancer. We found that MECCrt significantly reduced cell viability of two oral cancer Ca9-22 and CAL 27 cells in dose-responsive manners (p < 0.01). For the flow cytometry, the sub-G1 population and annexin V-intensity of MECCrt-treated Ca9-22 and CAL 27 cells significantly accumulated in a dose-responsive manner (p < 0.01). These apoptotic effects were associated with the findings that intracellular ROS generation were induced in MECCrt-treated Ca9-22 and CAL 27 cells in dose-responsive and time-dependent manners (p < 0.01). MECCrt also displayed significant reduction of mitochondrial membrane potential in these two cells in a dose-responsive manner (p < 0.01–0.05). Taken together, these results suggest that MECCrt has an antiproliferative potential against oral cancer cells through apoptosis, ROS induction, and mitochondria membrane depolarization.
目次 Table of Contents
論文審定書…………………………………………………………………...i
誌謝…………………………………………………………………………..ii
中文摘要……………………………………………………………..……...iii
英文摘要………………………………………………………………..…...iv
目錄………………………………………………………...…………..…….v
表目錄………………………………...………………………….….………vi
圖目錄………………………………………………………………..……..vii
縮寫表……………………………………………………………………...viii
壹、 介紹………………………………………………………...…………1
貳、 實驗材料與方法…………………………………………...…………3
1. 藥物製備……………………………………………....……………..3
2. 實驗材料來源及訂購方法…………………………....……………..3
3. 細胞培養……………………………………………..….……………6
4. 細胞活性…………………………………………..…………...….…6
5. 細胞週期………………………………………….………...………..7
6. 細胞凋亡分析……………………………………………...…...……9
7. 細胞內活性氧化物…………………….……...……………...…....10
8. 粒線體膜電位……………………………......……………...……..11
參、 實驗結果……………………………………..………….………….13
肆、 討論…………………………………………………..…..…………16
伍、 結論……………………………………………..…..………………17
陸、 圖表…………………………………………………..……………..18
柒、 參考文獻…………………………………………..…….………….41
參考文獻 References
[1] C. Y. Yen, C. H. Chen, C. H. Chang, H. F. Tseng, S. Y. Liu, L. Y. Chuang, C. H. Wen, and H. W. Chang, "Matrix metalloproteinases (MMP) 1 and MMP10 but not MMP12 are potential oral cancer markers", Biomarkers, vol. 14, no. 4, pp. 244-249, 2009.
[2] C. Y. Yen, C. Y. Huang, M. F. Hou, Y. H. Yang, C. H. Chang, H. W. Huang, C. H. Chen, and H. W. Chang, "Evaluating the performance of fibronectin 1 (FN1), integrin alpha4beta1 (ITGA4), syndecan-2 (SDC2), and glycoprotein CD44 as the potential biomarkers of oral squamous cell carcinoma (OSCC)", Biomarkers, vol. 18, no. 1, pp. 63-72, 2013.
[3] H. Myoung, S. P. Hong, P. Y. Yun, J. H. Lee, and M. J. Kim, "Anti-cancer effect of genistein in oral squamous cell carcinoma with respect to angiogenesis and in vitro invasion", Cancer Sci, vol. 94, no. 2, pp. 215-220, 2003.
[4] H. K. Kim, E. G. Wilson, Y. H. Choi, and R. Verpoorte, "Metabolomics: a tool for anticancer lead-finding from natural products", Planta Med, vol. 76, no. 11, pp. 1094-1102, 2010.
[5] A. D. Kinghorn, L. Pan, J. N. Fletcher, and H. Chai, "The relevance of higher plants in lead compound discovery programs", J Nat Prod, vol. 74, no. 6, pp. 1539-1555, 2011.
[6] C. C. Yeh, C. N. Tseng, J. I. Yang, H. W. Huang, Y. Fang, J. Y. Tang, F. R. Chang, and H. W. Chang, "Antiproliferation and induction of apoptosis in Ca9-22 oral cancer cells by ethanolic extract of Gracilaria tenuistipitata", Molecules, vol. 17, no. 9, pp. 10916-10927, 2012.
[7] C. C. Yeh, J. I. Yang, J. C. Lee, C. N. Tseng, Y. C. Chan, Y. C. Hseu, J. Y. Tang, L. Y. Chuang, H. W. Huang, F. R. Chang, and H. W. Chang, "Anti-proliferative effect of methanolic extract of Gracilaria tenuistipitata on oral cancer cells involves apoptosis, DNA damage, and oxidative stress", BMC Complement Altern Med, vol. 12, no. 1, pp. 142, 2012.
[8] J. S. Yang, C. W. Lin, C. H. Hsin, M. J. Hsieh, and Y. C. Chang, "Selaginella tamariscina attenuates metastasis via Akt pathways in oral cancer cells", PLoS One, vol. 8, no. 6, pp. e68035, 2013.
[9] B. Narotzki, A. Z. Reznick, D. Aizenbud, and Y. Levy, "Green tea: a promising natural product in oral health", Arch Oral Biol, vol. 57, no. 5, pp. 429-435, 2012.
[10] C. Y. Yen, C. C. Chiu, R. W. Haung, C. C. Yeh, K. J. Huang, K. F. Chang, Y. C. Hseu, F. R. Chang, H. W. Chang, and Y. C. Wu, "Antiproliferative effects of goniothalamin on Ca9-22 oral cancer cells through apoptosis; DNA damage and ROS induction", Mutat Res, vol. 747, no. 2, pp. 253-258, 2012.
[11] C. C. Chiu, J. W. Haung, F. R. Chang, K. J. Huang, H. M. Huang, H. W. Huang, C. K. Chou, Y. C. Wu, and H. W. Chang, "Golden berry-derived 4beta-hydroxywithanolide E for selectively killing oral cancer cells by generating ROS, DNA damage, and apoptotic pathways", PLoS One, vol. 8, no. 5, pp. e64739, 2013.
[12] M. T. Davies-Coleman, and D. E. A. Rivett, "Naturally occurring 6-substituted 5,6-dihydro-α-pyrones", Prog Chem Org Nat Prod, vol. 55, no. pp. 1-35, 1989.
[13] A. Toribio, A. Bonfils, E. Delannay, E. Prost, D. Harakat, E. Henon, B. Richard, M. Litaudon, J. M. Nuzillard, and J. H. Renault, "Novel seco-dibenzopyrrocoline alkaloid from Cryptocarya oubatchensis", Org Lett, vol. 8, no. 17, pp. 3825-3828, 2006.
[14] A. J. Cavalheiro, and M. Yoshida, "6-[omega-arylalkenyl]-5,6-dihydro-alpha-pyrones from Cryptocarya moschata (Lauraceae)", Phytochemistry, vol. 53, no. 7, pp. 811-819, 2000.
[15] L. D. Juliawaty, M. Kitajima, H. Takayama, S. A. Achmad, and N. Aimi, "A new type of stilbene-related secondary metabolite, idenburgene, from Cryptocarya idenburgensis", Chem Pharm Bull (Tokyo), vol. 48, no. 11, pp. 1726-1728, 2000.
[16] P. M. Allard, E. T. Dau, C. Eydoux, J. C. Guillemot, V. Dumontet, C. Poullain, B. Canard, F. Gueritte, and M. Litaudon, "Alkylated flavanones from the bark of Cryptocarya chartacea as dengue virus NS5 polymerase inhibitors", J Nat Prod, vol. 74, no. 11, pp. 2446-2453, 2011.
[17] T. S. Wu, C. R. Sun, and K. H. Lee, "Cytotoxic and anti-HIV phenanthroindolizidine alkaloids from Cryptocarya chinensis", Nat Prod Commun, vol. 7, no. 6, pp. 725-727, 2012.
[18] T. H. Chou, J. J. Chen, C. F. Peng, M. J. Cheng, and I. S. Chen, "New flavanones from the leaves of Cryptocarya chinensis and their antituberculosis activity", Chem Biodivers, vol. 8, no. 11, pp. 2015-2024, 2011.
[19] A. A. Nasrullah, A. Zahari, J. Mohamad, and K. Awang, "Antiplasmodial alkaloids from the bark of Cryptocarya nigra (Lauraceae)", Molecules, vol. 18, no. 7, pp. 8009-8017, 2013.
[20] R. A. Davis, O. Demirkiran, M. L. Sykes, V. M. Avery, L. Suraweera, G. A. Fechner, and R. J. Quinn, "7',8'-Dihydroobolactone, a typanocidal alpha-pyrone from the rainforest tree Cryptocarya obovata", Bioorg Med Chem Lett, vol. 20, no. 14, pp. 4057-4059, 2010.
[21] R. Feng, Z. K. Guo, C. M. Yan, E. G. Li, R. X. Tan, and H. M. Ge, "Anti-inflammatory flavonoids from Cryptocarya chingii", Phytochemistry, vol. 76, no. pp. 98-105, 2012.
[22] V. Dumontet, N. Van Hung, M. T. Adeline, C. Riche, A. Chiaroni, T. Sevenet, and F. Gueritte, "Cytotoxic flavonoids and alpha-pyrones from Cryptocarya obovata", J Nat Prod, vol. 67, no. 5, pp. 858-862, 2004.
[23] C. Y. Ong, S. K. Ling, R. M. Ali, C. F. Chee, Z. A. Samah, A. S. Ho, S. H. Teo, and H. B. Lee, "Systematic analysis of in vitro photo-cytotoxic activity in extracts from terrestrial plants in Peninsula Malaysia for photodynamic therapy", J Photochem Photobiol B, vol. 96, no. 3, pp. 216-222, 2009.
[24] V. Dumontet, C. Gaspard, N. Van Hung, J. Fahy, L. Tchertanov, T. Sevenet, and F. Gueritte, "New cytotoxic flavonoids from Cryptocarya infectoria", Tetrahedron, vol. 57, no. 29, pp. 6189-6196, 2001.
[25] H. Usman, E. H. Hakim, T. Harlim, M. N. Jalaluddin, Y. M. Syah, S. A. Achmad, and H. Takayama, "Cytotoxic chalcones and flavanones from the tree bark of Cryptocarya costata", Z Naturforsch C, vol. 61, no. 3-4, pp. 184-188, 2006.
[26] F. Kurniadewi, L. D. Juliawaty, Y. M. Syah, S. A. Achmad, E. H. Hakim, K. Koyama, K. Kinoshita, and K. Takahashi, "Phenolic compounds from Cryptocarya konishii: their cytotoxic and tyrosine kinase inhibitory properties", J Nat Med, vol. 64, no. 2, pp. 121-125, 2010.
[27] T. H. Chou, J. J. Chen, S. J. Lee, M. Y. Chiang, C. W. Yang, and I. S. Chen, "Cytotoxic flavonoids from the leaves of Cryptocarya chinensis", J Nat Prod, vol. 73, no. 9, pp. 1470-1475, 2010.
[28] J. C. Liao, "Lauraceae in Flora of Taiwan, 2nd ed.", Editorial Committee of the Flora of Taiwan; Taipei, Taiwan, vol. 2, no. pp. 448-451, 1996.
[29] B. H. Chen, H. W. Chang, H. M. Huang, I. W. Chong, J. S. Chen, C. Y. Chen, and H. M. Wang, "(-)-Anonaine induces DNA damage and inhibits growth and migration of human lung carcinoma h1299 cells", J Agric Food Chem, vol. 59, no. 6, pp. 2284-2290, 2011.
[30] M. Y. Lin, Y. R. Lee, S. Y. Chiang, Y. Z. Li, Y. S. Chen, C. D. Hsu, and Y. W. Liu, "Cortex moutan induces bladder cancer cell death via apoptosis and retards tumor growth in mouse bladders", Evid Based Complement Alternat Med, vol. 2013, no. pp. 207279, 2013.
[31] C. C. Chiu, P. L. Liu, K. J. Huang, H. M. Wang, K. F. Chang, C. K. Chou, F. R. Chang, I. W. Chong, K. Fang, J. S. Chen, H. W. Chang, and Y. C. Wu, "Goniothalamin inhibits growth of human lung cancer cells through DNA damage, apoptosis, and reduced migration ability", J Agric Food Chem, vol. 59, no. 8, pp. 4288-4293, 2011.
[32] J. Masters, "False cell lines", Carcinogenesis, vol. 23, no. 2, pp. 371, 2002.
[33] H. Ding, C. Han, D. Guo, Y. W. Chin, Y. Ding, A. D. Kinghorn, and S. M. D'Ambrosio, "Selective induction of apoptosis of human oral cancer cell lines by avocado extracts via a ROS-mediated mechanism", Nutr Cancer, vol. 61, no. 3, pp. 348-356, 2009.
[34] J. C. Lee, M. F. Hou, H. W. Huang, F. R. Chang, C. C. Yeh, J. Y. Tang, and H. W. Chang, "Marine algal natural products with anti-oxidative, anti-inflammatory, and anti-cancer properties", Cancer Cell Int, vol. 13, no. 1, pp. 55, 2013.
[35] C. Gorrini, I. S. Harris, and T. W. Mak, "Modulation of oxidative stress as an anticancer strategy", Nat Rev Drug Discov, vol. 12, no. 12, pp. 931-947, 2013.
[36] D. Trachootham, J. Alexandre, and P. Huang, "Targeting cancer cells by ROS-mediated mechanisms: a radical therapeutic approach?", Nat Rev Drug Discov, vol. 8, no. 7, pp. 579-591, 2009.
[37] A. K. Samhan-Arias, F. J. Martin-Romero, and C. Gutierrez-Merino, "Kaempferol blocks oxidative stress in cerebellar granule cells and reveals a key role for reactive oxygen species production at the plasma membrane in the commitment to apoptosis", Free Radic Biol Med, vol. 37, no. 1, pp. 48-61, 2004.
[38] S. H. Oh, and S. C. Lim, "A rapid and transient ROS generation by cadmium triggers apoptosis via caspase-dependent pathway in HepG2 cells and this is inhibited through N-acetylcysteine-mediated catalase upregulation", Toxicol Appl Pharmacol, vol. 212, no. 3, pp. 212-223, 2006.
[39] R. A. Ehlers, A. Hernandez, L. S. Bloemendal, R. T. Ethridge, B. Farrow, and B. M. Evers, "Mitochondrial DNA damage and altered membrane potential (delta psi) in pancreatic acinar cells induced by reactive oxygen species", Surgery, vol. 126, no. 2, pp. 148-155, 1999.
[40] S. McKenzie, and N. Kyprianou, "Apoptosis evasion: the role of survival pathways in prostate cancer progression and therapeutic resistance", J Cell Biochem, vol. 97, no. 1, pp. 18-32, 2006.
[41] S. Fulda, "Evasion of apoptosis as a cellular stress response in cancer", Int J Cell Biol, vol. 2010, no. pp. 370835, 2010.
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:自定論文開放時間 user define
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus: 已公開 available


紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code