Responsive image
博碩士論文 etd-0628115-103551 詳細資訊
Title page for etd-0628115-103551
論文名稱
Title
二氧化氮環境下比較WO3與W18O49之感測能力
Study on Comparing WO3 & W18O49 Gas Sensing Abilities under NO2 Environment
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
88
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2015-07-08
繳交日期
Date of Submission
2015-07-28
關鍵字
Keywords
NO2感測、磁控濺鍍、退火製程、W18O49、WO3
DC magnetron sputtering, annealing treatment, W18O49, NO2 sensing, WO3
統計
Statistics
本論文已被瀏覽 5621 次,被下載 0
The thesis/dissertation has been browsed 5621 times, has been downloaded 0 times.
中文摘要
本論文利用直流磁控濺鍍系統鍍製150及300 nm厚的鎢薄膜至Al2O3基板上並配合紅外線加熱爐在環境溫度700°C下進行退火製程,並討論退火恆溫時間為30、45、60、75及90分鐘對一維WOx奈米線產生的平均長度及組成相態的影響,利用XRD、SEM及HRTEM進行WOx組成相態、結構及形貌的分析,最後則是討論W18O49與WO3氣體感測器在NO2環境下的感測能力。研究中發現厚度為150 nm的鎢薄膜在環境溫度700°C下恆溫60及90分鐘之WOx組成相態分別為W18O49及WO3。 W18O49繞射角度為23.454°,主要沿著 (010) 晶面成長;WO3繞射角度為23.120°、23.586°及24.380°,分別對應 (002)、(020) 及 (200) 晶面,其結果皆與HRTEM結果相符合。對NO2氣體感測能力分析,本論文分別探討一維W18O49及WO3奈米線氣體感測器在最佳工作溫度下 (150°C) 改變不同濃度NO2 (10、20、50及100 ppm) 之感測特性。實驗發現一維W18O49及WO3奈米線氣體感測在最佳工作溫度下 (150°C) 皆會隨著NO2濃度的增加使靈敏度呈線性成長。W18O49分別在NO2濃度為10、20、50及100 ppm下的靈敏度為1.436、1.671、1.816及1.973; 則是1.462、1.726、1.970及2.365。
Abstract
In this study, tungsten films (150 and 300 nm thick) by DC magnetron sputtering were made, and annealing treatment at 700°C environment was used to discuss the influence of annealing duration (30, 45, 60, 75 and 90 mins) on the morphology, phase and microstructure. Finally, we compared one-dimension W18O49 nanowires with one-dimension WO3 nanowires on NO2 gas sensing ability. During this research, W18O49 and WO3 were made as 150 nm thick films by annealing for 60 and 90 mins at 700°C environment, respectively. One-dimension W18O49 and WO3 nanowires were examined by X-ray diffraction (XRD), scanning electron microscopy (SEM) and high resolution transmission electron microscopy (HRTEM). For the XRD, the W18O49 with strongest diffraction peaks appears at 2θ=23.454°, phase with (010) growth plan; WO3 with strongest diffraction peaks appears at 2θ=23.120°, 23.586°, 24.380°, phase with (002), (020), (200) growth plane. The results were the same as HRTEM. In gas sensing ability, this research focused on the different NO2 concentrations (10, 20, 50 and 100 ppm) at a working temperature of 150°C. W18O49 and WO3 gas sensing performance were dependent on NO2 concentrations. W18O49 sensing ability on different NO2 concentrations (10, 20, 50 and 100 ppm) were 1.436, 1.671, 1.816 and 1.973, respectively. WO3 sensing ability on different NO2 concentrations (10, 20, 50 and 100 ppm) were 1.462, 1.726, 1.970 and 2.365, respectively.
目次 Table of Contents
第一章 緒論 1
1-1:前言 1
1-2:研究動機與目的 2
1-3:本文架構 4
第二章 文獻回顧 5
2-1: 晶體結構及半導體特性 5
2-2:金屬氧化物氣體感測原理 6
2-3: 氣體感測器相關研究 8
第三章 實驗方法 31
3-1:直流磁控濺鍍製程 32
3-2:退火製程 34
3-3:檢測結構形貌及材料分析之儀器設備 37
3-4:氣體感測量測設備 38
第四章 結果與討論 42
4-1:直流磁控濺鍍製程 43
4-2:退火製程 44
4-3:材料分析 52
4-4:氣體感測特性分析 55
第五章 結論及未來展望 69
5-1:結論 69
5-2:未來展望 71
參考文獻 72
參考文獻 References
[1] H. W. Pollack, Materials science and metallurgy, Englewood Cliffs New Jersey Prentice-Hall, 1988.
[2] L. F. Chi, S. Z. Deng, N. S. Xu, J. Chen, J. C. She and X. H. Liang, “The study of optimizing growth conditions for improving field emission property of W18O49 nanorod arrays,” Journal of Physics: Conference Series, vol. 188, no. 012021, 2009.
[3] C. Suryanarayana, “The structure and properties of nanocrystalline materials: Issues and concerns,” JOM, vol. 54, 2002, pp. 24-27.
[4] 賴炤銘,李錫隆,奈米材料的特殊效應與應用,Chemistry,2003,585。
[5] P. M. Woodward and A. W. Sleight, “Ferroelectric tungsten trioxide,” J. Solid State Chem, vol. 131, no. 1, 1997, pp. 9-17.
[6] W. Qu and W. Wlodarski, “A thin-film sensing element for ozone, humidity and temperature,” Sensors and Actuators B, vol. 64, 2000, p 42.
[7] C. Santato, M. Odziemkowski, M. Ulmann and J. Augustynski, “Crystallographically oriented mesoporous WO3 films: Synthesis, characterization, and applications,” Journal of American Chemical Society, vol. 123, 2001, p 10639.
[8] C. Sella, M. Maaza, O. Nemraoui, J. Lafait, N. Renard and Y. Sampeur, “Preparation, characterization and properties of sputtered electrochromic and thermochromic devices,” Surface and Coatings Technology, vol. 98, 1998, p 1477.
[9] Y. Zhao, Z. C. Feng and Y. Liang, “Pulsed laser deposition of WO3-base film for NO2 gas sensor application,” Sensors and Actuators B, vol. 66, 2000, p 171.
[10] T. He, Y. Ma, Y. Cao, X. Hu, H. Liu, G. Zhang, W. Yang and J. Yao, “Photochromism of WO3 Colloids Combined with TiO2 Nanoparticles,” The Journal of Physical Chemistry B, vol. 106, 2002, p 12670.
[11] Y. S. Kim, S. C. Ha, K. Kim, H. Yang, S. Y. Choi, Y.T. Kim, “Room-temperature semiconductor gas sensor based on nonstoichiometric tungsten oxide nanorod film,” Applied Physucs Letters, vol. 86, 2005, p213105.
[12] http://teds.epa.gov.tw/new_main2.htm
[13] C. Baratto, G. Faglia, E. Comini, G. Sberveglieri, A. Taroni, V. La Ferrara, L. Quercia and G. Di Francia, “A novel porous silicon sensor for detection of sub-ppm NO2 concentrations,” Sens. Actuators B: Chem. 77 , 2001, pp. 62–66.
[14] E. K. Heidari, C. Zamani, E. Marzbanrad, B. Raissi and S. Nazarpour, “WO3-based NO2 sensors fabricated through low frequency AC electrophoretic deposition,” Sens. Actuators B: Chem. 146, 2010, pp. 165–170
[15] I. D. Kim, A. Rothschild, B. H. Lee, D. Y. Kim, S. M. Jo and H. L. Tuller, “Ultrasensi-tive chemiresistors based on electrospun TiO2nanofibers,” Nano Lett. 6, 2006, pp. 2009–2013.
[16] B. G. Kim, D. G. Lim, J. H. Park, Y. J. Choi and J. G. Park, “In-situ bridging of SnO2 nanowires between the electrodes and their NO2 gas sensing characteristics,” Appl. Surf. Sci. 257, 2011, pp. 4715–4718.
[17] A. K. Prasad, D. J. Kubinski and P. I. Gouma, “Comparison of sol–gel and ion beamdeposited MoO3thin film gas sensors for selective ammonia detection,” Sensor.Actuat. B: Chem. 93, 2003, pp. 25–30.
[18] M. Akiyama, J. Tamaki, N. Miura and N. Yamazoe, “Tungsten oxide-based semicon-ductor sensor highly sensitive to NO and NO2,” Chem. Lett. 20, 1991, pp. 1611–1614.
[19] D. Padilla-Rueda, J. M. Vadillo and J. J. Laserna, “Room temperature pulsed laserdeposited ZnO thin films as photoluminescence gas sensors,” Appl. Surf. Sci.259, 2012, pp. 806–810.
[20] X. Li, T. Lou, X. Sun and Y. Li, “Highly sensitive WO3hollow-sphere gas sensors,” Inorg. Chem. 43, 2004, pp. 5442–5449.
[21] A. G. Umnov, Y. Shiratori, H. Hiraoka, “Giant field amplification in tungsten nanowires,” Appl. Phys. A, vol. 77, 2003, p 159.
[22] Y. M. Solonin, O. Y. Khyzhun and E. A. Graivoronskaya, “Nonstoichiometric tungsten oxide based on hexagonal WO3,” Cryst. Growth Des, vol. 1, no. 6, 2001, pp. 473-477.
[23] R. Hu, H. Wu and K. Hong, “Growth of uniform tungsten oxide nanowires with small diameter via a two-step heating process,” J. Cryst. Growth, vol. 306, no. 2, 2007, pp. 395-399.
[24] C. Y. Su and H. C. Lin, “Direct route to tungsten oxide nanorod bundles: Microstructure and electro-optical properties,” Journal of Physical Chemistry, vol. 113, no. 10, 2009, pp. 4042-4046.
[25] G. A. Niklasson, J. Klasson and E. Olsson, “Polaron absorption in tungsten oxide nanoparticle aggregates,” Electrochim. Acta, vol. 46, no. 13-14, 2001, pp. 1967-1971.
[26] Y. M. Zhao, Y. H. Li, I. Ahmad, D. G. McCartney, Y. Q. Zhu and W. B. Hu, “Two-dimensional tungsten oxide nanowire networks,” Appl. Phys. Lett, vol. 89, no. 13, 2006, pp. 133116-133116-3.
[27] C. Sanrato, M. Odziemkowski, M. Ulmann and J. Augustynski, “Crystallographically oriented mesoporous WO3 films: Synthesis characterization, and applications,” J. Am. Chem. Soc, vol. 123, 2001, p 10639.
[28] C. G. Granqvist, “Electrochromic tungsten oxide films: Review of Progress 1993-1998,” Solar Energy Mater. Solar Cells, vol. 60, 2000, pp. 201-262.
[29] S. H. Baeck, K. S. Choi, T. F. Jaramillo, G. D. Stucky and E. W. McFarland, “Enhancement of photocatalytic and electrochromic properties of electrochemically fabricated mesoporous WO3 thin films,” Adv. Mater, vol. 15, no. 15, 2003, pp. 1269-1273.
[30] J. L. Solis, S. Saukko, L. Kish, C. G. Granqvist and V. Lantto, “Semiconductor gas sensors based on nanostructured tungsten oxide,” Thin Solid Films, vol. 391, 2001, pp. 255-260.
[31] Y. B. Li, Y. Bando and D. Golberg, “Quasi-aligned singlecrystalline W18O49 nanotubes and nanowires,” Adv. Mater, vol. 15, 2003, p 1294.
[32] J. Zhoum, L. Gong, S. Z. Deng, J. Chen, J. C. She, N. S. Xu, R. Yang and Z. L. Wang, “Growth and field-emission property of tungsten oxide nanotip arrays,” Appl. Phys. Lett, vol. 87, no, 22, 2005, p 223108.
[33] C. C. Liao, F. R. Chen and J. J. Kai, “Annealing effect on electrochromic properties of tungsten oxide nanowires,” Sol. Energy Mater. Sol. Cells, vol. 91, no. 13, 2007, pp. 1258-1266.
[34] S. Shi, X. Xue, P. Feng, Y. Liu, H. Zhao and T. Wang, “Low-temperature synthesis and electrical transport properties of W18O49 nanowires,” J. Cryst. Growth, vol. 310, no. 2, 2008, pp. 462-466.
[35] C. Y. Su, C. K. Lin, T. K. Yang, H. C. Lin and C. T. Pan, “Oxygen partial pressure effect on the preparation of nanocrystalline tungsten oxide powders by a plasma arc gas condensation technique,” Int. J. Refract. Met. Hard Mater, vol. 26, no. 5, 2008, pp. 423-428.
[36] S. M. Sze, “Semiconductor sensors,” John Wiley, Sons, New York, 1994, pp. 383-410.
[37] C. Xu, J. Tamaki, N. Miura and N. Yamazoe, “Grain size effects on gas sensitivity of porous SnO2-Based elements,” Sensors and Actuators B, vol. 3, 1991, pp. 147-155.
[38] S. Bai, K. Zhang, R. Luo, D. Li, A. Chen and C.C. Liu, ”Low-temperature hydrothermalsynthesis of WO3nanorods and their sensing properties for NO2,” J. Mater. Chem.22, 2012, pp. 12643–12650.
[39] Y. Shimizu and M. Egashira, “Basic aspects and challenges of semiconductor gas sensors,” MRS. Bulletin, 1999, pp. 18-24.
[40] J. Tamaki, Z. Zhang, K. Fujimori, M. Akiyana, T. Harada, N. Miura and N. Yamazoe, “Grain-size effects in tungsten oxide-base sensor for nitrogen oxides,” J. Electrochem. Soc., vol. 141, 1994, pp. 2207-2210.
[41] M. Hu, J. Zeng, W. Wang, H. Chen and Y. Qin, “Porous WO3 from anodized sputtered tungsten thin films for NO2 detection,” Applied Surface Science, vol. 258, 2011, pp. 1062-1068.
[42] S. An, S. Park, H. Ko and C. Lee, “Fabrication of WO3 nanotube sensors and their gas sensing properties,” Ceramics International, vol. 40, 2014, pp. 1423-1429
[43] W. Yan, M. Hu, P. Zeng, S. Ma and M. Li, “Room temperature NO2-sensing properties of WO3 nanoparticles/porous silicon,” Applied Surface Science, vol. 292, 2014, pp. 551-555.
[44] Y. Qin, C. Liu and Y. Liu, “Nanowire (nanorod) arrays-constructed tungsten oxide hierarchical structure and its unique NO2-sensing performances,” Journal of Alloys and Compounds, vol. 615, 2014, pp. 616-623.
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:自定論文開放時間 user define
開放時間 Available:
校內 Campus:永不公開 not available
校外 Off-campus:永不公開 not available

您的 IP(校外) 位址是 3.145.163.58
論文開放下載的時間是 校外不公開

Your IP address is 3.145.163.58
This thesis will be available to you on Indicate off-campus access is not available.

紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 永不公開 not available

QR Code