Responsive image
博碩士論文 etd-0628115-104722 詳細資訊
Title page for etd-0628115-104722
論文名稱
Title
液相層析結合感應耦合電漿質譜儀於環境水樣與食米樣品中砷物種分析及酒品中含鉻化合物之分析應用
Determination of arsenic species in water and rice samples and chromium species in wines by HPLC-DRC-ICP-MS
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
104
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2015-07-22
繳交日期
Date of Submission
2015-07-28
關鍵字
Keywords
化學蒸氣生成、離子對逆相層析、鉻物種、砷物種、感應耦合電漿質譜儀
ICP-MS, IPRP, chromium, arsenic, CVG
統計
Statistics
本論文已被瀏覽 5663 次,被下載 546
The thesis/dissertation has been browsed 5663 times, has been downloaded 546 times.
中文摘要
第一部分研究將以離子對逆相層析(Ion-pair reversed phase chromatography)管柱分離As(III)、TMAO、DMA、MMA及As(V)五個砷物種,並將分離後的砷物種經由化學蒸氣生成(Chemical vapor generator,CVG)系統產生砷的氫化物,並以氣動式霧化器作為氣液分離裝置。因為試劑中有使用HCl當作酸化試劑,而Cl會與Ar形成ArCl+造成多原子同質量光譜干擾,所以需要使用動態反應槽(Dynamic reaction cell,DRC)模式去除光譜干擾。本實驗系統最適化條件下能在10分鐘內分離出五種砷物種,波峰面積及高度皆小於5.5%,偵測極限為0.001-0.009 ng mL-1。最後會將本方法應用於河水參考樣品SLRS-4及環境中水樣,還有SRM 1568a rice flour以及市售食米樣品,以證明本方法的準確性及可行性。
第二部分研究將以離子對逆相層析法結合感應耦合電漿質譜儀對Cr(III)-EDTA及Cr(VI)進行分析。在動相中添加EDTA與Cr(III)進行螯合,使Cr(III)形成陰離子,另外添加離子對試劑TBAP,使陰電性的物種與其形成非極性離子對化合物,動相在pH 6.9的環境中沖堤C8管柱,使分析物在逆相管柱中產生滯留的作用,達到分離的效果。分離後使用感應耦合電漿質譜儀進行定量,並使用NH3作為反應氣體,去除ArC+的光譜干擾,得到較佳的偵測極限。在最適化的條件下,可以在三分鐘內分離鉻物種,Cr(III)及Cr(VI)的偵測極限分別為0.030、0.035 ng mL-1。最後將此方法應用於酒類樣品中鉻物種之分析。
Abstract
In the first research, speciation of arsenic was carried out using a vapor generation system and ion-pair reversed phase column with inductively coupled plasma spectrometry (IPRP-CVG-ICP-MS) for detection. The arsenic species studied were arsenite[As(III)], arsenate[As(V)], monomethylarsonic acid(MMA), dimethylarsinic acid(DMA), and trimethylarsine oxide(TMAO). Chromatographic separation of all the species was achieved in 10 min in isocratic elution mode using NH4OAc, TBAP at pH 5.5. To get the best signal, we have tested concentration of L-cysteine, HCl, and NaBH4. To avoid 40Ar35Cl+ interference with 75Ar+, we choose H2 as collision gas in dynamic reaction cell system to obtained interference free. The detection limit of arsenic species were in the range of 0.001-0.009 μg L-1.The accuracy of the method is evaluated by analyzing riverine water ceritified reference material (SLRS-4) and rice flour certified reference material (SRM 1568a). The method has been applied on several water and rice samples.
In the second research, speciation of chromium in wines was carried out ion-pair reversed phase column with inductively coupled plasma spectrometry (IPRP -ICP-MS) for detection. The mobile phase consisted EDTA, TBAP and methanol at pH 6.9. Chromatographic separation of all the species was achieved in 3 min in isocratic elution mode. The DRC conditions have also been optimized to obtained interference free measurements of 52Cr+ and 53Cr+. The detection limit of chromium species were 0.030 μg L-1 and 0.035 μg L-1. The method was applied on several wines. The recoveries from spiked samples were in the range of 93-103%. Wines were also determined total concentration after diluted by DRC-ICP-MS.
目次 Table of Contents
目錄
論文審定書 i
謝誌 ii
中文摘要 iii
Abstract iv
目錄 v
圖次 viii
表次 x
縮寫表 xi

第一章 液相層析結合化學蒸氣生成感應耦合電漿質譜儀環境水樣與食米中砷物種之分析 1
壹、前言 1
一、 研究背景 1
二、 化學蒸氣生成法(Chemical vapor generation,CVG) 4
三、 動態反應槽(Dynamic Reaction Cell,DRC) 4
貳、實驗部分 5
一、 儀器裝置 5
二、 試劑藥品與溶液配製 7
參、實驗過程 10
一、 液相層析條件最適化之探討 10
二、 化學蒸氣生成系統條件最適化之探討 10
三、 ICP-MS系統操作條件之探討 13
四、 DRC-ICP-MS系統操作條件最適化之探討 13
五、 分析訊號之再現性 13
六、 校正曲線與偵測極限估計 14
七、 萃取條件最適化 14
八、 真實樣品分析 14
肆、結果與討論 19
一、 液相層析條件最適化之探討 19
二、 化學蒸氣生成系統條件最適化之探討 25
三、 ICP-MS系統操作條件最適化探討 36
四、 DRC-ICP-MS系統操作條件最適化探討 36
五、 分析物訊號再現性 47
六、 校正曲線與偵測極限估計 47
七、 萃取條件最適化 47
八、 真實樣品分析 51
伍、結論 62
陸、參考文獻 63

第二章 液相層析結合感應耦合電漿質譜儀於酒品中含鉻化合物之分析 66
壹、前言 66
貳、實驗部分 68
一、 儀器裝置 68
二、 藥品與溶液之配製 68
參、實驗流程 70
一、 液相層析條件最適化 70
二、 DRC-ICP-MS系統條件最適化探討 71
三、 分析訊號之再現性 71
四、 校正曲線與預估偵測極限 71
五、 真實樣品分析 73
肆、結果與討論 73
一、 液相層析條件最適化 73
二、 DRC-ICP-MS系統最適化探討 74
三、 分析物訊號再現性 80
四、 校正曲線與預估偵測極限 80
五、 真實樣品分析 80
伍、結論 89
陸、參考文獻 90

圖次
圖1-1液相層析結合化學蒸氣生成系統裝置圖 8
圖1-2各砷物種之結構式 11
圖1-3砷物種於各pH值環境下之化學式及pKa值 12
圖1-4食米樣品萃取流程圖 15
圖1-5實驗流程圖 18
圖1-6探討動相之pH值對層析分離的影響 20
圖1-7探討動相之TBAP濃度對層析分離的影響 22
圖1-8探討動相之NH4OAc濃度對層析分離的影響 23
圖1-9探討動相之甲醇濃度對層析分離的影響 24
圖1-10比較CVG系統對砷物種訊號之增益效果,(a)無啟動CVG系統(b)有啟動CVG系統獲得之砷物種訊號圖 26
圖1-11砷物種氫化物生成機制 27
圖1-12 NaBH4濃度對砷物種(a)波峰高度(b)波峰面積(c)訊雜比的影響 30
圖1-13 L-cysteine濃度對砷物種(a)波峰高度(b)波峰面積(c)訊雜比的影響 31
圖1-14 HCl濃度對砷物種(a)波峰高度(b)波峰面積(c)訊雜比的影響 32
圖1-15混合線圈體積對砷物種(a)波峰高度(b)波峰面積(c)訊雜比的影響 34
圖1-16試劑流速對砷物種(a)波峰高度(b)波峰面積(c)訊雜比的影響 35
圖1-17載流氣體流速對砷物種(a)波峰高度(b)波峰面積(c)訊雜比的影響 37
圖1-18電漿功率對砷物種(a)波峰高度(b)訊雜比的影響 38
圖1-19以O2為反應氣體,改變氣體流速對(a)砷訊號及背景訊號(b)預估偵測極限(Estimated detection limit, EDL)的影響 40
圖1-20以H2為反應氣體,改變氣體流速對(a)砷訊號及背景訊號(b)預估偵測極限(Estimated detection limit, EDL)的影響 41
圖1-21以O2為反應氣體,改變Rpq對(a)砷訊號及背景訊號(b)預估偵測極限(Estimated detection limit, EDL)的影響 42
圖1-22以H2為反應氣體,改變Rpq對(a)砷訊號及背景訊號(b)預估偵測極限(Estimated detection limit, EDL)的影響 43
圖1-23以O2為反應氣體,改變AFV對(a)砷訊號及背景訊號(b)預估偵測極限(Estimated detection limit, EDL)的影響 44
圖1-24以H2為反應氣體,改變AFV對(a)砷訊號及背景訊號(b)預估偵測極限(Estimated detection limit, EDL)的影響 45
圖1-25以不同萃取方法萃取食米之萃取效率。 52
圖1-26標準河水參考樣品SLRS-4所得的砷物種氫化物生成層析圖 54
圖1-27系館自來水樣品所得的砷物種氫化物生成層析圖 55
圖1-28蓮池潭湖水樣品所得的砷物種氫化物生成層析圖 56
圖1-29標準參考樣品SRM 1568a Rice Flour萃取後所得的砷物種氫化物生成層析圖 58
圖1-30市售食米#Brand 1萃取後所得的砷物種氫化物生成層析圖 59
圖1-31市售食米#Brand 2萃取後所得的砷物種氫化物生成層析圖 60
圖2-1HPLC-ICP-MS之示意圖 69
圖2-2動相探討之EDTA濃度對鉻物種滯留時間的影響 75
圖2-3以NH3為反應氣體,改變氣體流速對(a)52Cr;(b)53Cr 訊號及背景訊號;(c)預估偵測極限(Estimated detection limit, LOD)的影響 76
圖2-4以NH3為反應氣體,改變Rpq對(a)52Cr;(b)53Cr 訊號及背景訊號;(c)預估偵測極限(Estimated detection limit, LOD)的影響 77
圖2-5以NH3為反應氣體,改變AFV對(a)52Cr;(b)53Cr 訊號及背景訊號;(c)預估偵測極限(Estimated detection limit, LOD)的影響 78
圖2-6紅酒之層析圖 84
圖2-7啤酒#1之層析圖 85
圖2-8啤酒#2之層析圖 86

表次
表1-1各種含砷化合物之LD50 2
表1-2微波消化系統參數設定 17
表1-3砷的揮發性產物 28
表1- 4 HPLC-CVG-DRC-ICP-MS系統操作條件 46
表1-5以HPLC-CVG-DRC-ICP-MS 測定1 ng mL-1砷物種滯留時間與分析訊號之再現性(n=3) 48
表1-6砷物種水溶液校正曲線及偵測極限 49
表1-7砷物種偵測極限之比較 50
表1-8以HPLC-CVG-DRC-ICP-MS測定SLRS-4河水參考樣品、Tap water及Lotus Pond真實樣品中砷物種之含量 53
表1-9 HPLC-CVG-DRC-ICP-MS測定標準參考樣品SRM 1568a Rice Flour及兩個市售食米真實樣品中砷物種之含量 61
表2-1以ICP-MS分析鉻時常見之光譜干擾 72
表2-2 HPLC-CVG-DRC-ICP-MS系統操作條件 79
表2-3以HPLC-DRC-ICP-MS測定5 ng mL-1鉻物種滯留時間與分析物訊號之再現性 81
表2-4鉻物種水溶液校正曲線及偵測極限 82
表2-5鉻物種偵測極限之比較 83
表2-6以HPLC-DRC-ICP-MS測定鉻物種之含量 87
參考文獻 References
1. Hsu, K. C.; Sun, C. C.; Huang, Y. L. Arsenic speciation in biomedical sciences: Recent advances and applications. Kaohsiung J Med Sci. 2011, 27, 382-389
2. Moreira, C. M.; Duarte, F. A.; Lebherz, J.; Pozebon, D.; Flores, E. M. M.; V. L. Dressler. Arsenic speciation in white wine by LC-ICP-MS. Food Chem. 2011, 126, 1406-1411.
3. Michalski, R.; Szopa, S.; Jabłońska, M.; Łyko, A. Application of hyphenated techniques in speciation analysis of arsenic, antimony, and thallium. Sci. World J. 2012, 2012, 1-17
4. Yu, H. S.; Liao, W. T.; Chai, C. Y. Arsenic carcinogenesis in the skin. J Biomed Sci. 2006, 13, 657-666
5. Tsai, S. M.; Wang, T. N.; Ko, Y. C. Mortality for certain diseases in areas with high levels of arsenic in drinking water. Arch Environ Health 1999, 54,186-93.
6. Leermakers, M.; Baeyens, W.; De Gieter, M.; Smedts, B.; Meert, C.; De Bisschop, H.C.; Morabito, R.; Quevauviller, Ph. Toxic arsenic compounds in environmental samples: Speciation and validation. Trends Anal. Chem. 2006, 25, 1-10.
7. Cao, X.; Hao, C.; Wang, G.; Yang, H.; Chen, D.; Wang, X. Sequential extraction combined with HPLC–ICP-MS for As speciation in dry seafood products. Food Chem. 2009, 113, 720-726.
8. Bednar, A. J.; Garbarino, J. R.; Burkhardt, M. R.; Ranville, J. F.; Wildeman, T. R. Field and laboratory arsenic speciation methods and their application to natural-water analysis. Water Research 2004, 38, 355-364.
9. Pertti, T.; Mari, P. K.; Pentti, K. G. M. Simultaneous determination of arsenic species by ion chromatography-inductively coupled plasma mass spectrometry. J. Chromatogr. A 1996, 750, 83-88.
10. Hsieh, Y. J.; Jiang, S. J. Application of HPLC-ICP-MS and HPLC-ESI-MS procedures for arsenic speciation in seaweeds. J. Agric. Food. Chem. 2012, 60, 2083-2089.
11. Zavala, Y. J.; Duxbury, J. M. Arsenic in rice: I. Estimating normal levels of total arsenic in rice grain. Environ. Sci. Technol. 2008, 42, 3856-3860.
12. Sanz, E.; Muñoz-Olivas, R.; Cámara, C. A rapid and novel alternative to conventional sample treatment for arsenic speciation in rice using enzymatic ultrasonic probe. Anal. Chim. Acta 2005, 535, 227-235.
13. Pizarro, I.; Gómez, M.; Palacios, M.A.; Cámara, C. Evaluation of stability of arsenic species in rice. Anal Bioanal Chem. 2003, 376, 102-109.
14. 蔡佳穎“液相層析結合感應耦合電漿質譜儀於環境樣品中鉻與硒及穀物樣品中砷與硒型態分析之應用”國立中山大學碩士論文,民國98年7月
15. Hwang, C. J.; Jiang, S. J. Determination of arsenic compounds in water samples by liquid chromatography-inductively coupled plasma mass spectrometry with an in situ nebulizer-hydride generator. Anal. Chim. Acta 1994, 289, 205-213
16. Gao, Y.; Liu, R.; Yang, L. Application of chemical vapor generation in ICP-MS:A review. Chin. Sci. Bull. 2013, 58, 1980-1991.
17. D’Ilio, S.; Violante, N.; Majorani, C.; Petrucci, F. Dynamic reaction cell ICP-MS for determination of total As, Cr, Se and V in complex matrices: Still a challenge? A review. Anal. Chim. Acta 2011, 698, 6-13
18. Lust, A. New dynamic reaction cell technology. Atomic Spectroscopy 1999, 20, 1-36.
19. Šlejkovec, Z.; Johannes Elteren, T.; Byrne, A. R.; Goei, J. J. M. Separation of radiolabelled arsenic compounds produced by neutron irradiation of organoarsenic compounds. Anal. Chim. Acta 1999, 380, 63-71.
20. Alava, P.; Van de Wiele, T.; Tack, F.; Du Laing, G. Extensive grinding and pressurized extraction with water are key points for effective and species preserving extraction of arsenic from rice. Anal Methods 2012, 4, 1237-1243
21. Kim, J.-Y.; Kim, W. I.; Kunhikrishnan, A.; Kang, D. W.; Kim, D. H.; Lee, Y. J.; Kim, Y. J.; Kim, C. T. Determination of arsenic species in rice grains using HPLC-ICP-MS. Food Sci. Biotechnol 2013, 22, 1509-1513.
22. Liang, F.; Li, Y.; Zhang, G.; Tan, M.; Lin, J.; Liu, W.; Li, Y.; Lu, W. Total and speciated arsenic levels in rice from China. Food Addit. Contam. Part A 2010, 27, 810-816.
23. Sanz, E.; Muñoz-Olivas, R.; Cámara, C. A rapid and novel alternative to conventional sample treatment for arsenic speciation in rice using enzymatic ultrasonic probe. Anal. Chim. Acta 2005, 535, 227-235.
24. Amayo, K. O.; Petursdottir, A.; Newcombe, C.; Gunnlaugsdottir, H.; Raab, A.; Krupp, E. M.; Feldmann, J. Identification and quantification of arsenolipids using reversed-phase HPLC coupled simultaneously to high-resolution ICPMS and high-resolution electrospray MS without species-specific standards. Anal. Chem. 2011, 83, 3589-3595.
25. Schmeisser, E.; Goessler, W.; Kienzl, N.; Francesconi, K. A. Volatile analytes formed from arsenosugars: Determination by HPLC-HG-ICPMS and implications for arsenic speciation analyses. Anal. Chem. 2004, 76, 418-423
26. Chen, H.; Brindle, I. D.; Le, X. C. Prereduction of arsenic(V) to arsenic(III), enhancement of the signal, and reduction of interferences by L-cysteine in the determination of arsenic by hydride generation. Anal. Chem. 1992, 64, 667-672.
27. D’Ulivo, A; Mester, Z.; Meija, J.; Sturgeon, R. E. Mechanism of generation of volatile hydrides of trace elements by aqueous tetrahydroborate(III). Mass spectrometric studies on reaction products and intermediates. Anal. Chem. 2007, 79, 3008-3015.
28. Sanchez-Rodas, D.; Gomez-Ariza, J. L.; Giraldez, I.; Velasco, A.; Morales, E. Arsenic speciation in river and estuarine waters from southwest spain. Sci. Total Environ. 2005, 345, 207-217.
29. Sanchez-Rodas, D.; Gomez-Ariza, J. L.; Giraldez, I.; Velasco, A.; Morales, E. Comparison of biota sample pretreatments for arsenic speciation with coupled HPLC-HG-ICP-MS. Analyst (Cambridge, UK) 2000, 125, 401-407.
30. Tsai, M. W.; Sun, Y. C. On-line coupling of an ultraviolet titanium dioxide film reactor with a liquid chromatography/hydride generation/inductively coupled plasma mass spectrometry system for continuous determination of dynamic variation of hydride- and nonhydride-forming arsenic species in very small microdialysate samples. Rapid Commun Mass Spectrom. 2008, 22, 211-216.
31. Sur, R.; Dunemann, L. Method for the determination of five toxicologically relevant arsenic species in human urine by liquid chromatography-hydride generation atomic absorption spectrometry. J. Chromatogr. B 2004, 807, 169-176.
32. Schaeffer, R.; Soeroes, C.; Ipolyi, I.; Fodor, P.; Thomaidis, N. S. Determination of arsenic species in seafood samples from the Aegean Sea by liquid chromatography-(photo-oxidation)-hydride generation-atomic fluorescence spectrometry. Anal. Chim. Acta 2005, 547, 109-118.

1. Shanker, A.K.; Cervantes, C.; Loza-Tavera, H.; Avudainayagam, S. Chromium toxicity in plants. Environ. Int. 2005, 31, 739-753.
2. Kotas, J.; Stasicka, Z. Chromium occurrence in the environment and methods of its speciation. Environ. Pollut. 2000, 107, 263-283.
3. Dhal, B.; Thatoi, H. N.; Das, N. N.; Pandey, B. D. Chemical and microbial remediation of hexavalent chromium from contaminated soil and mining/metallurgical solid waste: A review. J. Hazard. Mater. 2013, 250-251, 272-291.
4. Duran, A.; Tuzen, M.; Soylak, M. Speciation of Cr(III) and Cr(VI) in geological and water samples by ytterbium(III) hydroxide coprecipitation system and atomic absorption spectrometry. Food Chem. Toxicol. 2011, 49, 1633-1637.
5. Rai, D.; Eary, L. E.; Zachara, J. M. Environmental chemistry of chromium. Sci. Total Environ. 1989, 86, 15-23.
6. Chen, Z.; Naidu, R.; Subramanian, A. Separation of chromium (III) and chromium (VI) by capillary electrophoresis using 2,6-pyridinedicarboxylic acid as a pre-column complexation agent. J. Chromatogr. A 2001, 927, 219-227.
7. Gurleyuk, H.; Wallschlager, D. Determination of chromium(III) and chromium(VI) using suppressed ion chromatography inductively coupled plasma mass spectrometry. J. Anal. At. Spectrom. 2001, 16, 926-930.
8. Seby, F.; Charles, S.; Gagean, M.; Garraud, H.; Donard, O. F. X. Chromium speciation by hyphenation of high-performance liquid chromatography to inductively coupled plasma-mass spectrometry-study of the influence of interfering ions. J. Anal. At. Spectrom. 2003, 18, 1386-1390.
9. Vanhaecke, F.; Saverwyns, S.; De Wannemacker, G.; Moens , L.; Dams, R. Comparison of the application of higher mass resolution and cool plasma conditions to avoid spectral interferences in Cr(III)/Cr(VI) speciation by means of high-performance liquid chromatography-inductively coupled plasma mass spectrometry. Anal. Chim. Acta 2000, 419, 55-64.
10. Wolf, R. E.; Morrison, J. M.; Goldhaber, M. B. Simultaneous determination of Cr(III) and Cr(VI) using reversed-phased ion-pairing liquid chromatography with dynamic reaction cell inductively coupled plasma mass spectrometry. J. Anal. At. Spectrom. 2007, 22, 636-641.
11. Petrucci, F.; Senofonte, O. Determination of Cr(VI) in cosmetic products using ion chromatography with dynamic reaction cellinductively coupled plasma-mass spectrometry (DRC-ICP-MS). Anal. Methods 2015.
12. Novotnik, B.; Zuliani, T.; Martincic, A.; Scancar, J.; Milacic, R. Effective reduction of polyatomic interferences produced by high chloride and carbon concentrations in determination of Cr(VI) by FPLC-ICP-MS. J. Anal. At. Spectrom. 2012, 27, 488-495.
13. Bednar, A.J.; Kirgan, R.A.; Jones, W.T. Comparison of standard and reaction cell inductively coupled plasma mass spectrometry in the determination of chromium and selenium species by HPLC-ICP-MS. Anal. Chim. Acta. 2009, 632, 27-34.
14. Wolf, R. E.; Morman, S. A.; Hageman, P. L.; Hoefen, T. M.; Plumlee, G. S. Simultaneous speciation of arsenic, selenium, and chromium : species stability, sample preservation, and analysis of ash and soil leachates. Anal. Bioanal. Chem. 2011, 401, 2733-2745.
15. Hagendorfer, H.; Goessler, W. Separation of chromium(III) and chromium(VI) by ion chromatography and an inductively coupled plasma mass spectrometer as element-selective detector. Talanta 2008, 76, 656-661.
16. Kuo, C.Y.; Jiang, S.J.; Sahayam, A.C. Speciation of chromium and vanadium in environmental samples using HPLC-DEC-ICP-MS. J. Anal. At. Spectrom. 2007, 22, 636-641.
17. Chang, Y.L.; Jiang, S.J. Determination of chromium species in water samples by liquid chromatography-inductively coupled plasma-dynamic reaction cell-mass spectrometry. J. Anal. At. Spectrom. 2001, 16, 858-862.
18. 劉恆嚴. 液相層析結合感應耦合電漿質譜儀與電噴灑質譜儀於人體尿液中含砷及硒化合物與營養補給品中含鉻及砷化合物之分析應用. 國立中山大學, 高雄市, 2013.
19. Baralkiewicz, D.; Pikosz, B.; Blter, M.; Marcinkowska, M. Speciation analysis of chromium in drinking water samples by ion-pair reversed-phase HPLC-ICP-MS: validation of the analytical method evaluation of the uncertainty budget. Accred. Qual. Assur.2013, 18, 391-401.
20. Kaewkhomdee, N.; Mounicou, S.; Szpunar, J.; Lobinski, R.; Shiowatana, J. Characterization of binding and bioaccessibility of Cr in Cr-enriched yeast by sequential extraction followed by two-dimensional liquid chromatography with mass spectrometric detection. Anal. Bioanal. Chem. 2010, 396, 1355-1364.
21. Kim, S. I.; Woo, D. J.; Lee, M. Y.; Woo, G. J.; Kang, D. K.; Cha, K. W. Determination of chromium(III) picolinate using high performance liquid chromatography-ultraviolet spectrophotometry. Bull. Korean Chem. Soc. 2003, 24, 1517-1520.
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:自定論文開放時間 user define
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus: 已公開 available


紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code