Responsive image
博碩士論文 etd-0628115-113147 詳細資訊
Title page for etd-0628115-113147
論文名稱
Title
流動注入化學蒸氣技術結合感應耦合電漿質譜儀於茶葉中鈷、鎳及指甲油樣品中砷、鎘、銻、汞及鉛之分析應用
Determination of Co and Ni in tea leaves and As, Cd, Sb, Hg and Pb in nail polishes by FI-CVG-ICP-MS
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
96
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2015-07-22
繳交日期
Date of Submission
2015-07-28
關鍵字
Keywords
化學蒸氣生成法、感應耦合電漿質譜儀、茶葉、同位素稀釋法、指甲油
CVG, Tea leaves, ICP-MS, Isotope dilution, Nail polish
統計
Statistics
本論文已被瀏覽 5691 次,被下載 316
The thesis/dissertation has been browsed 5691 times, has been downloaded 316 times.
中文摘要
研究分為兩部分,第一部分研究利用化學蒸氣生成技術結合感應耦合電漿質譜儀分析茶葉中之鈷及鎳的含量。為得到最佳之分析物訊號靈敏度,實驗中將依序對增益試劑8-hydroxyquinoline濃度、HNO3濃度、NaBH4濃度、反應試劑流速、混合線圈體積做最適化探討。CVG系統中所使用之氣液分離裝置幫助分析物從基質分離,減輕了鈣的光譜干擾。分析物訊號波峰面積及波峰高度皆在5% (n=5)。實驗中會比較水溶液校正法(External calibration)及標準添加法(Standard addition)之斜率,證明基質的存在影響了氫化物的生成效率,故選擇標準添加法進行分析物之定量,本方法鈷及鎳方法偵測極限分別為0.4、3.9 ng g-1。最後以最適化條件分析兩種標準參考樣品及兩種市售茶葉來證實方法之準確性及可行性。
第二部分研究利用泥漿進樣結合流動注入化學蒸氣生成技術結合感應耦合電漿質譜儀分析指甲油中之砷、鎘、銻、汞及鉛之含量。經最適化後,實驗中會配製成以0.5% /m/v 指甲油、1% m/v thiourea、0.75 mg L-1 Co 及 1.2% v/v HCl所組成之泥漿樣品溶液。而以指甲油基質中添加適量元素標準溶液,分析物之波鋒面積及高度之相對標準偏差(RSD)均在4%之內(n=4)。不同物種之元素會具不同的蒸氣生成效率,可能導致定量上的偏差,故比較As(III)、As(V)及Sb(III)、Sb(V)在經過泥漿製備法後之化學蒸氣生成效率,結果證實泥漿製法之預還原效果。實驗中比較標準添加法(Standard addition method)及水溶液校正法(External calibration method)之斜率,證明基質會影響蒸氣生成效率,故最後選擇以標準添加法作為定量方式,且搭配同位素稀釋法來驗證方法。本方法所得之砷、鎘、銻、汞及鉛方法偵測極限分別為0.06、0.12、0.14、0.20及12 ng g-1。最後以本方法分析三種不同品牌之市售指甲油且比較ETV-ICP-MS分析之結果來證實方法準確性及可行性。
Abstract
First research analyze Co and Ni in leaves by FI-CVG-ICP-MS. To get better signal in experiments, subsequently testing concentration of 8-hydroxyquinoline, HNO3 and NaBH4. In addition, testing reagent flow rate and volume of mixing coil, too. Gas-liquid separator used in the CVG system separate analytes from the matrix, and thereby reducing the spectral interference of calcium. The existence of the matrix affect the hydride generation efficiency, so we use standard addition as our quantitative method. Under the optimum operating conditions, the detection limit obtained from the curve were in the range of 0.4-3.9 ng g-1 for Co and Ni in tea leaves sample. Besides, the analytical results of SRM 1573a and SRM 1547 determined by standard addition were in a good agreement with certified value. Finally, the method has been applied for determination of Co and Ni in commercially available tea leaves.
Second research using slurry sampling as pretreatment, and to determine As, Cd, Sb, Hg and Pb in nail polish by FIA-CVG-ICP-MS. The nail polish slurry containing 0.5% m/v nail polish, 1% m/v thiourea, 0.75 mg L-1 Co and 1.2% v/v HCl. Then, we compare the slope of external calibration and standard addition to ensure that if the matrix will affect the efficiency of vapor generation. We choose standard addition and isotope dilution as our quantitative method. The method has been applied for determination of As, Cd, Sb, Hg and Pb in commercially available nail polish. Under the optimum operating conditions, the detection limit obtained from the curve were in the range of 0.06-12 ng g-1 for As, Cd, Sb, Hg and Pb in nail polish sample.
目次 Table of Contents
審定書 i
謝誌 ii
中文摘要 iii
Abstract iv
目錄 v
圖目錄 viii
表目錄 x
第一章 流動注入化學蒸氣生成技術結合感應耦合電漿質譜儀於茶葉中鈷、鎳分析之應用 1
壹、前言 1
一、研究背景 1
二、金屬的毒性及對人體的危害 4
三、流動注入分析法(Flow Injection Analysis,FIA)原理 4
四、化學蒸氣生成法(Chemical vapor generation)原理 5
貳、實驗部分 6
一、儀器裝置 6
二、試劑藥品及溶液配置 7
參、實驗過程 10
一、化學蒸氣生成系統各參數之探討 10
二、ICP-MS系統操作條件之探討 11
三、樣品稀釋倍數探討 12
四、光譜干擾探討 12
五、最適化參數之調整 12
六、分析訊號之再現性 13
七、校正曲線及偵測極限估計 13
八、樣品的前處理與分析 13
肆、結果與討論 16
一、化學蒸氣生成系統參數之探討 16
二、ICP-MS系統操作條件之探討 25
三、樣品稀釋倍數探討 25
四、光譜干擾探討 25
五、最適化參數之調整 29
六、分析訊號之再現性 29
七、校正曲線及偵測極限估計 29
八、樣品的前處理與分析 33
伍、結論 39
陸、參考文獻 40
第二章 泥漿進樣流動注入化學蒸氣生成技術結合同位素稀釋法感應耦合電漿質譜儀於指甲油中砷、鎘、銻、汞及鉛之應用 45
壹、前言 45
一、研究背景 45
二、金屬的毒性及對人體的危害 47
三、同位素稀釋法 (Isotope dilution,ID) 48
貳、實驗部分 49
一、儀器裝置 49
二、試劑藥品及溶液配置 50
參、實驗過程 53
一、化學蒸氣生成系統各參數探討 53
二、ICP-MS系統操作條件之探討 54
三、樣品稀釋倍數探討 55
四、分析訊號之再現性 55
五、光譜干擾探討 55
六、校正曲線及偵測極限估計 56
七、樣品的前處理與分析 56
肆、結果與討論 58
一、化學蒸氣生成系統各參數之探討 58
二、ICP-MS系統操作條件之探討-氣體流速對分析訊號之影響 68
三、樣品稀釋倍數探討 68
四、分析物訊號之再現性 68
五、光譜干擾探討 71
六、校正曲線及偵測極限估計 71
七、樣品的前處理與分析 76
伍、結論 81
陸、參考文獻 82
參考文獻 References
1. Laboratories, Y. F.; Awwad, N. S.; El-khalafawv, A.; Abdel-Rassoul, A. A. Annual effective and concentration levels of heavy metals in different types of tea in Egypt. Int. J. Phys. Sci. 2008, 3, 112-119
2. Luo, K. W.; Ko, C. H.; Yue, G. G. L.; Lee, J. K. M.; Li, K. K.; Lee, M.; Li, G.; Fung, K. P.; Leung, P. C.; Lau, C. B. S. Green tea( Camellia sinensis) extract inhibits both the metastasis and osteolytic components of mammary cancer 4T1 lesions in mice. J. Nutr. Biochem. 2014, 25, 395-403
3. Wang, P.; Henning, S. M.; Heber, D.; Vadgama, J. V. Sensitization to docetaxel in prostate cancer cells by green tea and quercetin. J. Nutr. Biochem. 2015, 26, 408-415
4. Karaosmanoglu, H.; Kilmartin, P. A. 9-Tea extracts as antioxidants for food preservation. Handbook of Antioxidants for Food Preservation 2015, 219-233
5. Jeszka-Skowron, M.; Krawczyk, M.; Zgola-Grzeslowiak, A. Determination of antioxidant activity, rutin, quercetin, phenoloc acids and trace elements in tea infusions of citric acid addition on extraction of metals. J. Food. Compos. Anal. 2015, 40, 70-77
6. Koo, S. I.; Noh, S. K. Green tea as inhibitor of the intestinal absorption of lipids: potential mechanism for its lipid-lowering effect. J. Agric. Food Chem. 2007, 18, 179-183
7. Cabrera, C.; Gimenaz, R.; Lopez, M. C. Determination of tea components with antioxidant activity. J. Agric. Food Chem. 2003, 51, 4427-4435
8. Han, W. Y.; Shi, Y. Z.; Ma, L. F.; Ruan, J. Y. Arsenic, cadmium, cobolt, and copper in different types of Chinese tea. Bull Environ Contam Toxicol. 2005, 75, 272-277
9. Atafar, Z.; Mesdaghinia, A.; Nouri, J.; Homaee, M.; Yunesian, M.; Ahmadimoghaddam, M.; Mahvi, A. H. Effect of fertilizer application on soil heavy metal concentration. Environ Monit Assess 2010,160, 83-89
10. Herrador, M. A.; Gonzalez, A. G. Pattern recognition procedures for differentiation of green, black, and oolong teas according to their metal content from inductively coupled plasma atomic emission spectrometry. Talanta 2001, 53, 1249-1257
11. Scancar, J.; Zuliani, T.; Zigon, D.; Milacic, R. Ni speciation in tea infusions by monolithic chromatography-ICP-MS and Q-TOF-MS. Anal Bioanal Chem. 2013, 405, 2041-2051
12. Szymczycha-Madeja, A.; Welna, M.; Pohl, P. Determination of essential and non-essential elements in green tea and black tea by FAAS and ICP OES simplified - multivariate classification of different tea products. Microchemical Journal 2015, 121, 122-129
13. Wenqi, Q.; Furuya, K.; Gohshi, Y. Determination of cobalt and nickel in plant materials by graphite furnace AAS. Bunseki kagaku 1987, 36, 436-440
14. Dobrowolski, R.; Otto, M. Determination of nickel and cobalt in reference plant materials by carbon slurry sampling GFAAS technique after their simultaneous preconcentration onto modified activated carbon. J FOOD COMPOS ANAL 2012, 26, 58-65
15. Mohammadi, S. Z.; Hamidian, H.; Karimzadeh, L.; Moeinadini, Z. Tween 80 coated alumina: An alternative support for solid phase extraction of copper, nickel, cobalt and cadmium prior to flame atomic absorption spectrometric determination. ARAB J CHEM 2012
16. Wang, J. B.; Huang, X. H.; Wang, Y. G.; Yuan, X. R. Rapid Determination of copper, lead, cadmium, cobalt and nickel in tartary buckwheat tea by inductively coupled plasma-mass spectrometry. Analysis and Testing Technology and Instruments 2010 16, 104-107
17. Wu, L.; Zheng, C.; Ma, Q.; Hu, C.; Hou, X. Chemical vapor generation for determination of mercury by inductively coupled plasma mass spectrometry. Applied spectroscopy reviews 2007, 42, 79-102
18. Ying, G., Rui, L.; Lu, Y. Application of chemical vapor generation in ICP-MS: A review. Chin. Sci. Bull. 2013, 58, 1980-1991
19. Sun, H.; Suo, R., H. Sun, R. Suo Determination of ultra-trace amounts of nickel in environmental samples by atomic absorption spectrometry with in-situ trapping of volatile species in an iridium-palladium coated graphite furnace. Int. J. Environ. Anal. Chem. 2008, 88, 791–801.
20. Pena-Vazquez, E.; Villanueva-Alonso, J.; Bermejo-Barrera, P. Optimization of a vapour generation method for metal determination using ICP-OES. J. Anal. At. Spectrom. 2007, 22, 642-649
21. Pohl, P. Recent advances in chemical vapor generation via reaction with sodium tetrahydroborate. TRAC, Trends Anal. Chem. 2004, 23, 21-27
22. Pohl, P.; Zyrnicki, W. On the transport of some metals into inductively coupled plasma during hydride generation process. Anal. Chim. Acta. 2001, 429, 135–143
23. Oliveira, S. R.; Arruda, M. A. Z. Application of laser ablation (imaging) inductively coupled plasma mass spectrometry for mapping and quantifying Fe in transgenic and non-transgenic soybean leaves. J. Anal. At. Spectrom. 2015, 30, 389-395
24. Yan, X. P.; Ni, Z. M. Vapour generation atomic absorption spectrometry. Anal. Chim. Acta. 1994, 291, 89-105
25. Chen, Z. C.; Jiang, S. J. Determination of Ge, As and Se in nickel-based alloys by flow injection hydride generation dynamic reaction cell inductively coupled plasma mass spectrometry. J. Anal. At. Spectrom. 2006, 21, 566-573
26. Wu, P.; He, L. A.; Zheng, C. B. et al. Applications of chemical vapor generation in non-tetrahydroborate media to analytical atomic spectrometry. J. Anal. At. Spectrom. 2010, 25, 1217-1246
27. Ammerman, C. B.; Baker, D. P.; Lewis, A. J. Bioavailability of Nutrients for Animals: Amino Acids, Minerals, Vitamins. Academic Press 1995, 441 pages
28. IARC (International Agency for Research on Cancer).
29. 中國醫藥大學附設醫院
30. Das, K. K.; Das, S. N.; Dhundasi, S. A. Nickel, its adverse health effects & oxidative stress. Indian J Med Res 2008, 128,415-425
31. Ambadeker, S. R.; Parab, S.; Bachankar, A. Determination of cadmium, copper, nickel, lead in some tea samples in india. J. Pharm. Biomed. Sci. 2012, 3, 943-946
32. Samal, L.; Mishra, C. Significance of nickel in livestock health and production. IJAVMS 2011, 5, 349-361
33. Alexandrovn, R.; Costisor, O.; Patron, L. Nickel. Exp. Pathology and parasitology 2006, 911, 64-74
34. Maxwell, P.; Salnikow, K. HIF-1: an Oxygen and metal responsive transcription factor. Cancer Biology and Therapy 2004, 3, 29–35
35. Ruzicka, J.; Hansen, E. H., “Flow Injection Analysis”, 2nd ed., Wiely, New York 1998
36. D’Ulivo, A. Chemical vapor generation by tetrahydroborate(Ⅲ) and other borane complexes in aqueous media. A critical discussion of fundamental processes and mechanisms involved in reagent decomposition and hydride formation. Spectrochim. Acta Part B 2004, 59, 793-825
37. Vieira, M.A.; Ribeiro, A.S.; Curtius, A.J.; Sturgeon, R.E. Determination of total mercury and methylmercury in biological samples by photochemical vapor generation. Anal. Bioanal. Chem. 2007, 388, 837–847.
38. Zheng, C.; Ma, Q.; Wu, L.; Hou, X. ; Sturgeon, R.E. UV photochemical vapor generation atomic fluorescence spectrometric determination of conventional hydride generation element. Microchem. J. 2010, 95, 32–37.
39. Golimowski, J.; Golimoswska, K. UV-photooxidation as pretreatment step in inorganic analysis of environmental samples. Anal. Chim. Acta. 1996, 325, 111–133.
40. Silva, M. M. D.; Jesus, A. D.; Zmozinski, A. V.; Vieira, M. A.; Ribeiro, A. S. Determination of mercury in naphtha and petroleum condensate by photochemical vapor generation atomic absorption spectrometry. Microchem. J. 2013, 110, 227-232
41. 黃覃君,”流動注入冷蒸氣生成裝置結合同位素稀釋感應耦合電漿質譜儀分析法定量真實樣品中微量鎘之研究”,中山大學碩士論文,民國八十八年七月。
42. Marrero, J.; Smichowski, P. Evaluation of vapor generation for the determination of nickel by inductively coupled plasma-atomic emission spectrometry. Anal Bioanal Chem 2002, 374, 196-202
43. Sun, H. –W.; Suo, R. Enhancement reagents for simultaneous vapor generation of zinc and cadmium with intermittent flow system coupled to atomic fluorescence spectrometry. Anal. Chim. Acta. 2004, 509, 71-76
44. Villanueva-Alonso, J.; Pena-Vazquez, E.; Bermejo-Barrera, P. Use of high resolution continuum source atomic absorption spectrometry as a detector for chemically generated noble and transition metal vapors. Spectrochimica Acta Part B 2009, 64, 659-665
45. Sun, H. W.; Suo, R. Investigation of enhancing effect for hydride generation-atomic fluorescence of transition metal elements. Spectrosc. Spectr. Anal. 2008, 28(11), 2684-2690
46. Pohl, P.; Jamroz, P.; Welna, M.; Szymczycha-Madeja, A.; Greda,K. Chemical-vapor generation of transition metals through the reaction with tetrahydroborate in recent achievements in analytical atomic spectrometry. Trends in Analytical Chemistry 2014, 59, 144-155
47. Zeng, C.; Jia, Y.; Lee, Y.-I.; Hou, X.; Wu, L. Ultrasensitive determination of cobalt and nickel by atomic fluorescence spectrometry using APDC enhanced chemical vapor generation. Microchem. J. 2012, 104, 33–37.
48. Zhang, C.; Li, Y.; Wu, P.; Yan, X.-P. Synergetic enhancement effect of ionic liquid and diethyldithiocarbamate on the chemical vapor generation of nickel for its atomic fluorescence spectrometric determination in biological samples. Anal. Chim. Acta. 2009, 652, 143–147.
49. Feng, Y.-L. ; Sturgeon, R. E.; Lama, J. W.; D’Ulivo, A. Insights into the mechanism of chemical vapor generation of transition and noble metals. J. Anal. At. Spectrom. 2005, 20, 255-265
50. Zeng, C.; Zhou, N. ; Luo, J. Synergetic enhancement effect of room temperature ionic liquids and ammonium pyrrolidine dithiocarbamate on the chemical vapor generation of iron, cobalt and nickel in environmental and biological samples by atomic absorption spectrometric determination. J. Anal. At. Spectrom. 2012, 27, 120-125
51. Cerutti, S.; Moyano, S.; Marrero, J.; Smichowski, P.; Martinez, L. D. On-line preconcentration of nickel on activated carbon prior to its determination by vapor generation associated to inductively coupled plasma optical emission spectrometry. J. Anal. At. Spectrom. 2005, 20, 559-561
52. Asfaw, A.; Wibetoe, G. Dual mode sample introduction for multi-element determination by ICP-MS: the optimization and use of a method based on simultaneous introduction of vapor formed by NaBH4 reaction and aerosol from the nebulizer. J. Anal. At. Spectrom. 2006, 21, 1027-1035
53. Daiane P.C. de Quadros , Daniel L.G. Borges. Direct analysis of alcoholic beverages for the determination of cobalt, nickel and tellurium by inductively coupled plasma mass spectrometry following photochemical vapor generation. Microchemical Journal 2014, 116, 244–248
54. Denga, H.; Zhenga, C.; Liua, L.;Wub, L.; Hou, X. Photochemical vapor generation of carbonyl for ultrasensitive atomic fluorescence spectrometric determination of cobalt. Microchemical Journal 2010, 96, 277–286

1. Lv, C.; Sun, J.; Cheng, H. Determination of formaldehyde residue in cosmetics by short-column high performance liquid chromatography with mass spectrometric confirmation. Anal. Methods 2015, 7, 1630-1634
2. Miranda-Bermudez, E.; Harp, B. P.; Barrows, J. N. Qualitative identification of permitted and non-permitted color additives in cosmetics. Journal of AOAC INTERNATIONAL. 2014, 97, 039-1047
3. Bocca, B; Pino, A.; Alimonti, A.; Forte, G. Toxic metals contained in cosmetics: A status report. Regul Toxicol Pharm. 2014, 68, 447-467
4. Engelhardt, H.; Klinkner, R. Determination of free formaldehyde in nail varnish by HPLC. Chromatographia. 1985, 20, 729-731
5. Bortoleto, G. G.; Macarovscha, G. T.; Cadore, S. Determination of cadmium by flame-atomic absorption spectrometry after preconcentration on silica gel modified with cupferron. J. Braz. Chem. Soc. 2004, 15, 313-317
6. Favaro, P. C.; Bode, P.; De Nadai Fernandes, E. A. Trace elements in nail polish as a source of contamination of nail clippings when used in epidemiological studies. Journal of Radioanalytical and Nuclear Chemistry 2005, 264, 61-65
7. Grosser, Z.; Davidowski, L.; Thompson L. The determination of metals in cosmetics. PerkinElmer Appl. Note 2011 , 1–6
8. Santos, E. J.; Herrmann, A. B.; Frescura, V. L. A.; Curtius, A. J., Simultaneous determination of As, Hg, Sb, Se and Sn in sediments by slurry sampling axial view inductively coupled plasma optical emission spectrometry using on-line chemical vapor generation with internal standardization. J. Anal. At. Spectrom. 2005, 20, 538-543
9. Su, Y.; Xu, K.; Gao, Y.; Hou, X. Determination of trace mercury in geological samples by direct slurry sampling cold vapor generation atomic absorption spectrometry. Microchim. Acta 2008, 160, 191-195
10. Deng, D.; Zhou, J.; Ai, X.; Yang, L.; Hou, X.; Zheng, C. Ultrasensitive determination of selenium by atomic fluorescence spectrometry using nano-TiO2 pre-concentration and in situhydride generation. J. Anal. At. Spectrom. 2012, 27, 270-275
11. Vieira, M. A.; Ribeiro, A. S.; Dias, L. F.; Curtius, A. J. Determination of Cd, Hg, Pb and Se in sediments slurries by isotopic dilution calibration ICP-MS after chemical vapor generation using an on-line system or retention in an electrothermal vaporizer treated with iridium. Spectrochim Acta Part B 2005, 60, 643-652
12. Hwang T J, Jiang S J. Determination of cadmium by flow injection isotope dilution inductively coupled plasma mass spectrometry with vapour generation sample introduction. J Anal At Spectrom 1997, 12, 579–584
13. Chen Y L, Jiang S J. Determination of tellurium in a nickel-based alloy by flow injection vapor generation inductively coupled plasma mass spectrometry. J Anal At Spectrom 2000, 15, 1578–1582
14. Ying, G.; Rui, L.; Lu, Y. Application of chemical vapor generation in ICP-MS. Chin. Sci. Bull. 2013, 58, 1980-1991
15. 行政院衛生福利部食品藥物管理署《化粧品中含不純物之重金屬殘留限量規定》民國103年1月8號
16. Ratnaike, R. N. Acute and chronic arsenic toxicity. Postgrad Med J 2003, 79, 391–396
17. Guy, R.; Hostynek, J. J.; Hinz, R. S.; Lorence, C.R. Metal and the skin: topical effects and systemic absorption, third ed. CRC Press, New York. 1999
18. Nico, P. S.; Ruby, M. V.; Lowney, Y. W.; Holm, S.E. Chemical speciation and bioaccessibility of arsenic and chromium in chromated copper arsenate-treated wood and soils. Environ. Sci. Technol. 2006, 40, 402-408
19. ATSDR. Agency for Toxic Substances and Disease Registry. Toxicological profile for cadmium. U. S. Department of Health and Human Sevice, Atlanta, USA 2012
20. Lavilla, I.; Cabaleiro,N.; Costas, M.; Calle, I.; Bendicho, C. Ultrasound-assisted emulsification of cosmetic samples prior to elemental analysis by different atomic spectrometric techniques. Talanta 2009, 80, 109-116
21. Wester, R. C.; Maibach, H. I.; Sedik, L.;Melendres, J.; DiZio, S.; Wade, M. In vitro percutaneous absorption of cadmium from water and soil into human skin. Fundam. Appl. Toxicol. 1992, 19, 1-5
22. IARC. International Agency for research on cancer, beryllium, cadmium, mercury, and exposures in the glass manufacturing industry. IARC, Lyon, France. 1993, 58
23. ATSDR., Agency for toxic substances and disease registry. Toxicological profile for Antimony., U. S. Department of Health and Human Sevice, Atlanta, USA 1992
24. Lavicoli, I.; Caroli, S.; Alimonti, A.; Petrucci, F.; Carelli, G., Biomonitoring of workers exposed to low antimony trioxide levels. J. Trace Elem. Med. Biol 2002, 16, 33-39
25. White Jr., G. P.; Mathias, C. G.; Davin, J. S. Dermatities in workers exposed to antimony in a melting process. J. Occup. Med. 1993, 35, 392-395
26. Liao, P. H.; Jiang, S. J.; Sahayam, A. C. Cloud point extraction combined with flow injection vapor generation inductively coupled plasma mass spectrometry for preconcentration and determination of Ultra trace Cd, Sb and Hg in water samples. J. Anal. At. Spectrum. 2012, 27, 1518-1524
27. Hwang, T. J.;Jiang, S. J. Determination of copper, cadmium and lead in biological samples by isotope dilution inductively coupled plasma mass spectrometry after on-line pre-treatment by anodic stripping voltammetry. J. Anal. At. Spectrom. 1996, 11, 353-357
28. Matusiewicz, H.; Mroczkowska, M. Hydride generation from slurry samples after ultrasonication and ozonation for the direct determination of trace amounts of As(III) and total inorganic arsenic by their in situ trapping followed by graphite furnace atomic absorption spectrometry. J. Anal. At. Spectrom. 2003, 18, 751-761
29. Feng, Y. L.; Narasaki, H.; Tian, L. C.; Chen, H. Y. Speciation of Sb(III) and Sb(V) by Hydride Generation High-Resolution ICP-MS Combined With Prereduction of Sb(V) With L-cysteine. At. Spectrosc. 2000, 21, 30-36
30. D’Ulivo, A. Chemical vapor generation by tetrahydroborate(III) and other borane complexes in aqueous media. A critical discussion of fundamental processes and mechanisms involved in reagent decomposition and hydride formation. Spectrochim
. Acta Part B. 2004, 59, 793-825
31. Lu, Y. K. ; Sun, H. W.; Yuan, C. G.; Yan, X. P. Simultaneous determination of trace cadmium and arsenic in biological samples by hydride generation-double channel atomic fluorescence spectrometry. Anal. Chem. 2002, 74, 1525-1529
32. Guo, X.; Guo, X. Studies on the reaction between cadmium and potassium tetrahydroborate in aqueous solution and its application in atomic fluorescence spectrometry. Anal. Chim. Acta. 1995, 310, 377-385
33. Frank, J.; Krachler, M.; Shotyk, W. Direct determination of asenic in acid digests of plant and peat samples using HG-AAS and ICP-SF-MS. Anal. Chim. Acta. 2005, 530, 307-316
34. Suo, R.; Sun, H. W. Enhancement reagents for simultaneous vapor generation of zinc and cadmium with intermittent flow system coupled to atomic fluorescence spectrometry. Anal. Chim. Acta. 2004, 509, 71-76
35. D’Ulivo, A. Chemical vapor generation by tetrahydroborate(Ⅲ) and other borane complexes in aqueous media. A critical discussion of fundamental processes and mechanisms involved in reagent decomposition and hydride formation. Spectrochim. Acta Part B 2004, 59, 793-825
36. Raber, G.; Raml, R.; Goessler, W.; Francesconi, K. A. Quantitative speciation of arsenic compounds when using organic solvent gradients in HPLC-ICPMS. J. Anal. At. Spectrom. 2010, 570-576
37. Larsen, E. H.; Sturup, S. Carbon-enhanced inductively coupled plasma mass spectrometric detection of arsenic and selenium and its application to arsenic speciation. J. Anal. At. Spectrom. 1994, 1099-1155
38. Ding, W. W.; Sturgeon, R. E. Evaluation of electrochemical hydride generation for the determination of total antimony in natural waters by electrothermal atomic absorption spectrometry with in situ concentration. J. Anal. At. Spectrom. 1996, 11, 225–230
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:自定論文開放時間 user define
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus: 已公開 available


紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code