Responsive image
博碩士論文 etd-0628115-115534 詳細資訊
Title page for etd-0628115-115534
論文名稱
Title
聚合物修飾氧化銅對亞甲基藍降解的反應探討
Methylene blue degradation on polymer-coated copper oxide surfaces
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
99
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2015-06-26
繳交日期
Date of Submission
2015-07-28
關鍵字
Keywords
氧化銅、亞甲基藍、瓊脂
CuO, Methylene blue, Agar
統計
Statistics
本論文已被瀏覽 5732 次,被下載 0
The thesis/dissertation has been browsed 5732 times, has been downloaded 0 times.
中文摘要
工業廢水的排放,造成水中有機染劑的污染一直是個嚴重的問題。不但嚴重影響生活環境也會對人類健康造成威脅。過氧化氫是一個無汙染的氧化劑,以過度金屬(例如:氧化銅)活化過氧化氫,能產生羥基自由基(hydroxyl radical)與氫氧自由基(hydroperoxyl radical),可有效降解有機染劑,改善汙染問題。本實驗以亞甲基藍(methylene blue)當作汙染物,以氧化銅(CuO)分解過氧化氫,產生氫氧自由基,降解亞甲基藍。第一部分實驗,我們合成氧化銅、氧化銅@聚合物(CuO@polymer),聚合物包括聚乙二醇(Polyethylene glycol)、聚賴氨酸(Polylysine)、聚多巴胺(Polydopamine)。利用紫外光譜儀(Ultraviolet–visible spectroscopy)偵測不同反應時間亞甲基藍的消色程度,並在不同pH值下作偵測。pH值越高消色效果越好。在pH為4的條件下,反應10分鐘後CuO @ PDA消色程度將近100%之間。在動力學分析中CuO、CuO@PEG、CuO@Polylysine反應系統中以10分鐘為分界,分別屬於兩個不同一級反應,CuO@PDA前二十分鐘,為一個二級反應。第二部分的實驗,我們合成洋菜膠包覆氧化銅(Agar@CuO)、洋菜膠包覆氧化銅-聚合物(Agar@CuO-Polymer)做為催化劑。在pH為4的條件下,反應60分鐘之後Agar@CuO-PDA的消色消色效果最佳,消色超過90%。在反應系統中30分鐘為分界,分別屬於兩個不同一級反應。
Abstract
Because of the discharge of industrial wastewater, water pollution caused by organic dyes has been a serious problem. Not only seriously affect the living environment but also threaten human health. Hydroxyl radical is an excellent oxidant which can effectively degrade the organic dye. We use copper oxide and hydrogen peroxide as a Fenton-like agent to produce hydroxyl radical, and degrade methylene blue known as an organic pollutant. In the first part of the experiment, we synthesized CuO and CuO@polymer as Fenton-like agent to decompose hydrogen peroxide, the polymer include polyethylene glycol, polylysine, and polydopamine, and the UV-Vis spectrometer monitor the reaction. We find the optimal reaction conditions by adjusting the initial pH of the solution. The results show the optimum reaction condition was pH value between 3 to 9. The decolorization degree of methylene blue at pH 4 almost reached 100% by the agent CuO@PDA after 10 minutes. In the kinetic analysis of CuO, CuO @ PEG and CuO @ Polylysine, the reaction can divide into to two part of pseudo first-order reaction by 10 min, and the CuO@PDA is a pseudo second-order reaction before 20 min. In the second part of the experiment, we synthesized CuO@Agar、CuO@Agar-Polymer to combine the adsorption technology and the Fenton-like reaction to degrade methylene blue, the polymer include polyethylene glycol, polylysine, and polydopamine. We find that the optimal decolorization conditions is to use CuO@Agar-PDA as agent at pH 4, which can decolorize over 90% of methylene blue over 60 min. In the kinetic analysis of CuO@Agar、CuO@Agar-Polymer, the reaction can divide into to two part of pseudo second-order reaction by 30 min.
目次 Table of Contents
摘要 i
Abstract ii
圖目錄 vi
表目錄 ix
第一章 緒論 1
1-1奈米科技 1
1-2研究動機 3
第二章 儀器原理 4
2-1. 紫外/可見光譜儀 4
2-1-1紫外/可見光光譜 ( Ultraviolet-Visible Spectrometry, UV-Vis ) 4
2-1-2比爾定律 ( Beer’s Law ) 6
2-1-3 使用儀器與參數設定 7
2-2. 傅立葉轉換紅外光譜儀 ( Fourier Transform Infrared Spectrometer, FT-IR ) 7
2-2-1 FT-IR簡介 7
2-2-2 原理 7
2-2-3 使用儀器與參數設定 10
2-3. X-ray 粉末繞射儀 10
2-3-1 X光粉末繞射 10
2-3-2 X-ray 繞射原理 11
2-3-3 使用儀器與參數設定 12
2-4. 穿透式電子顯微鏡 ( Transmission Electron Microscope, TEM ) 13
2-4-1 TEM工作原理 13
2-4-2 TEM成像機制 13
第三章 以聚合物包覆氧化銅作為類芬頓試劑分解過氧化氫降解亞甲基藍 15
3-1. 前言 15
3-2 文獻回顧 17
3-2-1 廢水處理方式 17
3-2-2 芬頓反應(Fenton reaction) 20
3-2-3 類芬頓反應(Fenton-like reactions) 21
3-2-4 染料(Dye) 22
3-2-5 氧化銅 (Copper oxide, CuO) 24
3-2-6 聚合物 25
3-3 實驗部分 26
3-3-1 實驗藥品 26
3-3-2 實驗步驟 27
3-4 實驗結果 29
3-4-1 氧化銅奈米粒子的特徵分析 29
3-4-2 CuO@Polymer奈米粒子的特徵分析 31
3-4-3 亞甲基藍降解測試 36
3-4-4 CuO與CuO@Polymer類芬頓反應消色亞甲基藍 40
3-4-5 亞甲基藍的降解機制 43
3-4-6 反應動力學分析(Kinetics of Fenton reaction) 45
3-4-7 改變pH值的消色效果比較 47
3-4-8 反應機制探討 49
3-4-9 氧化銅降解亞甲基藍重複使用性探討 51
3-5 結論 52
第四章 以聚合物修飾瓊脂並包覆氧化銅結合吸附與高級氧化程序降解亞甲基藍 53
4-1. 前言 53
4-2. 文獻回顧 53
4-3 實驗部分 55
4-3-1 實驗藥品 55
4-3-2 實驗步驟 56
4-4 實驗結果 57
4-4-1 CuO@Agar與CuO@Agar-Polymer特徵分析 57
4-4-2 亞甲基藍消色測試 65
4-4-3 CuO@Agar與CuO@Agar-Polymer消色亞甲基藍 67
4-4-4 反應動力學分析(Kinetics of Fenton reaction) 69
4-4-5 改變pH值的消色效果比較 71
4-5 結論 73
第五章 結論 74
參考文獻 75
參考文獻 References
1. Mahmoudi, M.; Lynch, I.; Ejtehadi, M. R.; Monopoli, M. P.; Bombelli, F. B.; Laurent, S., Protein− nanoparticle interactions: opportunities and challenges. Chem. Rev. 2011, 111 (9), 5610-5637.
2. Poole Jr, C. P.; Owens, F. J., Introduction to nanotechnology. John Wiley & Sons: 2003.
3. Buzea, C.; Pacheco, I. I.; Robbie, K., Nanomaterials and nanoparticles: sources and toxicity. Biointerphases 2007, 2 (4), MR17-MR71.
4. Dingreville, R.; Qu, J.; Cherkaoui, M., Surface free energy and its effect on the elastic behavior of nano-sized particles, wires and films. J. Mech. Phys. Solids 2005, 53 (8), 1827-1854.
5. Majima, H.; Saito, Y.; Hiramoto, T. In Impact of quantum mechanical effects on design of nano-scale narrow channel n-and p-type MOSFETs, Electron Devices Meeting, 2001. IEDM'01. Technical Digest. International, IEEE: 2001; pp 33.3. 1-33.3. 4.
6. Jaeger, G., What in the (quantum) world is macroscopic? Am. J. Phys. 2014, 82 (9), 896-905.
7. Takagi, S., Macroscopic quantum tunneling. Cambridge University Press: 2002.
8. Fulekar, M., Nanotechnology: Importance and Applications. IK International Pvt Ltd: 2010.
9. Upstone, S. L., Ultraviolet/visible light absorption spectrophotometry in clinical chemistry. Encyclopedia of Analytical Chemistry 2000.
10. Räty, J. A.; Peiponen, K.-E.; Asakura, T., UV-visible reflection spectroscopy of liquids. Springer Science & Business Media: 2004; Vol. 92.
11. Beer, A., Determination of the absorption of red light in colored liquids. Ann. der Phys. u. Chem 1852, 86, 78-88.
12. Smith, B. C., Fundamentals of Fourier transform infrared spectroscopy. CRC press: 2011.
13. Holler, F. J.; Skoog, D. A.; Crouch, S. R., Principles of instrumental analysis. Belmont: Thomson 2007.
14. IMSU, I., INFRARED THEORY. Imo State University Under Graduate Repository 2015.
15. Stuart, B. H., Infrared Spectroscopy: Fundamentals and Applications. John Wiley & Sons, Inc.: 2004; p 203.
16. White, R., Chromatography/Fourier transform infrared spectroscopy and its applications. CRC Press: 1989; Vol. 10.
17. Michelson, A. A.; Morley, E. W., On the Relative Motion of the Earth and of the Luminiferous Ether. Sidereal Messenger, vol. 6, pp. 306-310 1887, 6, 306-310.
18. White, R., Chromatography/Fourier Transform Infrared Spectroscopy and its Applications. CRC Press: 1989; p 344.
19. Norrish, K.; Taylor, R. M., Quantitative analysis by X-ray diffraction. Clay Miner. Bull 1962, 5 (28), 98-109.
20. He, B. B.; Preckwinkel, U.; Smith, K. L., Comparison between conventional and two-dimensional XRD. Adv. X-Ray Anal. 2003, 46, 37-42.
21. Al-Kdasi, A.; Idris, A.; Saed, K.; Guan, C. T., Treatment of textile wastewater by advanced oxidation processes—a review. Global nest: the Int. J 2004, 6 (3), 222-230.
22. Bragg, W. L. In The diffraction of short electromagnetic waves by a crystal, Proc. Cambridge Philos. Soc., 1913; p 4.
23. Warren, B. E., X-ray Diffraction. Courier Corporation: 1969.
24. Egerton, R., Physical principles of electron microscopy: an introduction to TEM, SEM, and AEM. Springer Science & Business Media: 2006.
25. Cing, S.; Yesilada, O., Astrazon Red dye decolorization by growing cells and pellets of Funalia trogii. J. Basic Microbiol. 2004, 44 (4), 263-269.
26. Gupta, V.; Khamparia, S.; Tyagi, I.; Jaspal, D.; Malviya, A., Decolorization of mixture of dyes: A critical review. Global J. Environ. Sci. Manage. 2015, 1 (1), 71-94.
27. Chaudhari, K.; Bhatt, V.; Bhargava, A.; Seshadri, S., Combinational system for the treatment of textile waste water: a future perspective. Asian J. Water Environ. Pollut. 2011, 8 (2), 127-136.
28. Kannan, N.; Sundaram, M. M., Kinetics and mechanism of removal of methylene blue by adsorption on various carbons—a comparative study. Dyes Pigm. 2001, 51 (1), 25-40.
29. Solmaz, S. K. A.; Üstün, G. E.; Birgül, A.; Yonar, T., Advanced oxidation of textile dying effluents: comparison of Fe2+/H2O2, Fe3+/H2O2, O3 and chemical coagulation processes. 2009.
30. Semerjian, L.; Ayoub, G., High-pH–magnesium coagulation–flocculation in wastewater treatment. Adv. Environ. Res. 2003, 7 (2), 389-403.
31. Wang, J.-P.; Chen, Y.-Z.; Ge, X.-W.; Yu, H.-Q., Optimization of coagulation–flocculation process for a paper-recycling wastewater treatment using response surface methodology. Colloids Surf., A 2007, 302 (1), 204-210.
32. Amuda, O.; Amoo, I., Coagulation/flocculation process and sludge conditioning in beverage industrial wastewater treatment. J. Hazard. Mater. 2007, 141 (3), 778-783.
33. Tang, C.; Chen, V., Nanofiltration of textile wastewater for water reuse. Desalination 2002, 143 (1), 11-20.
34. Wijannarong, S.; Aroonsrimorakot, S.; Thavipoke, P.; Sangjan, S., Removal of reactive dyes from textile dyeing industrial effluent by ozonation process. APCBEE Procedia 2013, 5, 279-282.
35. Sancar, B.; Balci, O., Decolorization of different reactive dye wastewaters by O3 and O3/ultrasound alternatives depending on different working parameters. Text. Res. J. 2012, 0040517512460298.
36. Chatzisymeon, E.; Xekoukoulotakis, N. P.; Coz, A.; Kalogerakis, N.; Mantzavinos, D., Electrochemical treatment of textile dyes and dyehouse effluents. J. Hazard. Mater. 2006, 137 (2), 998-1007.
37. Tobien, T.; Cooper, W. J.; Nickelsen, M. G.; Pernas, E.; O'Shea, K. E.; Asmus, K.-D., Odor control in wastewater treatment: The removal of thioanisole from water a model case study by pulse radiolysis and electron beam treatment. Environ. Sci. Technol. 2000, 34 (7), 1286-1291.
38. Rai, H. S.; Bhattacharyya, M. S.; Singh, J.; Bansal, T.; Vats, P.; Banerjee, U., Removal of dyes from the effluent of textile and dyestuff manufacturing industry: a review of emerging techniques with reference to biological treatment. Crit. Rev. Environ. Sci. Technol. 2005, 35 (3), 219-238.
39. Abdel-Raouf, N.; Al-Homaidan, A.; Ibraheem, I., Microalgae and wastewater treatment. Saudi J. Biol. Sci. 2012, 19 (3), 257-275.
40. Ambrosio, S.; Campos-Takaki, G., Decolorization of reactive azo dyes by Cunninghamella elegans UCP 542 under co-metabolic conditions. Bioresour. Technol. 2004, 91 (1), 69-75.
41. Ince, N.; Tezcanh, G., Treatability of textile dye-bath effluents by advanced oxidation: preparation for reuse. Water Sci. Technol. 1999, 40 (1), 183-190.
42. Luo, W.; Zhu, L.; Wang, N.; Tang, H.; Cao, M.; She, Y., Efficient removal of organic pollutants with magnetic nanoscaled BiFeO3 as a reusable heterogeneous Fenton-like catalyst. Environ. Sci. Technol. 2010, 44 (5), 1786-1791.
43. Pignatello, J. J.; Oliveros, E.; MacKay, A., Advanced oxidation processes for organic contaminant destruction based on the Fenton reaction and related chemistry. Crit. Rev. Environ. Sci. Technol. 2006, 36 (1), 1-84.
44. Zhang, L.; Nie, Y.; Hu, C.; Qu, J., Enhanced Fenton degradation of Rhodamine B over nanoscaled Cu-doped LaTiO3 perovskite. Appl. Catal. B 2012, 125, 418-424.
45. Kestioğlu, K.; Yonar, T.; Azbar, N., Feasibility of physico-chemical treatment and advanced oxidation processes (AOPs) as a means of pretreatment of olive mill effluent (OME). Process Biochem. 2005, 40 (7), 2409-2416.
46. Ai, Z.; Xiao, H.; Mei, T.; Liu, J.; Zhang, L.; Deng, K.; Qiu, J., Electro-Fenton degradation of rhodamine B based on a composite cathode of Cu2O nanocubes and carbon nanotubes. J. Phys. Chem. C 2008, 112 (31), 11929-11935.
47. Rastogi, A.; Al-Abed, S. R.; Dionysiou, D. D., Effect of inorganic, synthetic and naturally occurring chelating agents on Fe (II) mediated advanced oxidation of chlorophenols. Water Res. 2009, 43 (3), 684-694.
48. Zhang, T.; Oyama, T.; Aoshima, A.; Hidaka, H.; Zhao, J.; Serpone, N., Photooxidative N-demethylation of methylene blue in aqueous TiO2 dispersions under UV irradiation. J. Photochem. Photobiol. A: Chem. 2001, 140 (2), 163-172.
49. Kwon, B. G.; Kim, E.; Lee, J. H., Pentachlorophenol decomposition by electron beam process enhanced in the presence of Fe (III)-EDTA. Chemosphere 2009, 74 (10), 1335-1339.
50. Lin, S.-S.; Gurol, M. D., Catalytic decomposition of hydrogen peroxide on iron oxide: kinetics, mechanism, and implications. Environ. Sci. Technol. 1998, 32 (10), 1417-1423.
51. Gupta, V. K.; Ali, I.; Saleh, T. A.; Nayak, A.; Agarwal, S., Chemical treatment technologies for waste-water recycling—an overview. RSC Advances 2012, 2 (16), 6380-6388.
52. Kamaruddin, M. A.; Yusoff, M. S.; Aziz, H. A.; Akinbile, C. O., Recent Developments of Textile Waste Water Treatment by Adsorption Process: A Review. 2013.
53. Crini, G., Non-conventional low-cost adsorbents for dye removal: a review. Bioresour. Technol. 2006, 97 (9), 1061-1085.
54. Gomes, A. C.; Nunes, J. C.; Simões, R. M., Determination of fast ozone oxidation rate for textile dyes by using a continuous quench-flow system. J. Hazard. Mater. 2010, 178 (1), 57-65.
55. Gonta, M.; Duca, G.; Matveevici, V.; Iambartv, V.; Mocanu, L., Textile waste water treatment of dyes by combining the coagulation and catalytic oxidation with hydrogen peroxide methods. In Management of Water Quality in Moldova, Springer: 2014; pp 197-208.
56. Pirkarami, A.; Olya, M. E.; Limaee, N. Y., Decolorization of azo dyes by photo electro adsorption process using polyaniline coated electrode. Prog. Org. Coat. 2013, 76 (4), 682-688.
57. Emami-Meibodi, M.; Parsaeian, M.-R.; Banaei, M., Ozonation and Electron Beam Irradiation of Dyes Mixture. OzSE 2013, 35 (1), 49-54.
58. Yong, R. N.; Mulligan, C. N.; Fukue, M., Geoenvironmental sustainability. CRC Press: 2006.
59. Cesaro, A.; Naddeo, V.; Belgiorno, V., Wastewater treatment by combination of advanced oxidation processes and conventional biological systems. J. Biorem. Biodegrad. 2013, 4 (8), 1-8.
60. Kalra, S. S.; Mohan, S.; Sinha, A.; Singh, G. In Advanced oxidation processes for treatment of textile and dye wastewater: a review, 2nd International Conference on Environmental Science and Development, IACSIT Press Singapore: 2011; pp 271-5.
61. Barbusiński, K., Fenton reaction-controversy concerning the chemistry. Ecol. Chem. Eng., S 2009, 16 (3), 347-358.
62. Fenton, H., On a new reaction of tartaric acid. Chem News 1876, 33 (190), b16.
63. Haber, F.; Weiss, J., Über die katalyse des hydroperoxydes. Naturwissenschaften 1932, 20 (51), 948-950.
64. Barb, W.; Baxendale, J.; George, P.; Hargrave, K., Reactions of ferrous and ferric ions with hydrogen peroxide. Part I.—The ferrous ion reaction. Trans. Faraday Society 1951, 47, 462-500.
65. Kremer, M., Mechanism of the Fenton reaction. Evidence for a new intermediate. PCCP 1999, 1 (15), 3595-3605.
66. Walling, C., Fenton's reagent revisited. Acc. Chem. Res. 1975, 8 (4), 125-131.
67. Lee, S.-h.; Oh, J.-y.; Park, Y.-c., Degradation of phenol with Fenton-like treatment by using heterogeneous catalyst (modified iron oxide) and hydrogen peroxide. Bull. Korean Chem. Soc. 2006, 27 (4), 489-494.
68. Zazo, J.; Casas, J.; Mohedano, A.; Gilarranz, M.; Rodriguez, J., Chemical pathway and kinetics of phenol oxidation by Fenton's reagent. Environ. Sci. Technol. 2005, 39 (23), 9295-9302.
69. Jung, Y. S.; Lim, W. T.; Park, J. Y.; Kim, Y. H., Effect of pH on Fenton and Fenton‐like oxidation. Environ. Technol. 2009, 30 (2), 183-190.
70. Hsieh, S.; Lin, P.-Y., FePt nanoparticles as heterogeneous Fenton-like catalysts for hydrogen peroxide decomposition and the decolorization of methylene blue. J. Nanopart. Res. 2012, 14 (6), 1-10.
71. Deng, J.; Jiang, J.; Zhang, Y.; Lin, X.; Du, C.; Xiong, Y., FeVO 4 as a highly active heterogeneous Fenton-like catalyst towards the degradation of Orange II. Appl. Catal. B 2008, 84 (3), 468-473.
72. Zhang, Y.; Deng, J.; He, C.; Huang, S.; Tian, S.; Xiong, Y., Application of Fe2V4O13 as a new multi‐metal heterogeneous Fenton‐like catalyst for the degradation of organic pollutants. Environ. Technol. 2010, 31 (2), 145-154.
73. Lam, F. L.; Yip, A. C.; Hu, X., Copper/MCM-41 as a highly stable and pH-insensitive heterogeneous photo-Fenton-like catalytic material for the abatement of organic wastewater. Ind. Eng. Chem. Res. 2007, 46 (10), 3328-3333.
74. Yan, J.; Tang, H.; Lin, Z.; Anjum, M. N.; Zhu, L., Efficient degradation of organic pollutants with ferrous hydroxide colloids as heterogeneous Fenton-like activator of hydrogen peroxide. Chemosphere 2012, 87 (2), 111-117.
75. Juster, N. J., Color and chemical constitution. J. Chem. Educ. 1962, 39 (11), 596.
76. Anderson, R. J.; Bendell, D. J.; Groundwater, P. W., Organic spectroscopic analysis. Royal Society of Chemistry: 2004; Vol. 22.
77. Robinson, J. W.; Frame, E. S.; Frame II, G. M., Undergraduate instrumental analysis. CRC Press: 2014.
78. Sasabe, H., Hyper-structured Molecules II: Chemistry, Physics and Applications. CRC Press: 1999; Vol. 2.
79. Wang, W.; Wang, L.; Shi, H.; Liang, Y., A room temperature chemical route for large scale synthesis of sub-15 nm ultralong CuO nanowires with strong size effect and enhanced photocatalytic activity. CrystEngComm 2012, 14 (18), 5914-5922.
80. Zheng, X.; Xu, C.; Tomokiyo, Y.; Tanaka, E.; Yamada, H.; Soejima, Y., Observation of charge stripes in cupric oxide. Phys. Rev. Lett. 2000, 85 (24), 5170.
81. Borgohain, K.; Mahamuni, S., Formation of single-phase CuO quantum particles. J. Mater. Res. 2002, 17 (05), 1220-1223.
82. Ebrahimnia-Bajestan, E.; Niazmand, H.; Duangthongsuk, W.; Wongwises, S., Numerical investigation of effective parameters in convective heat transfer of nanofluids flowing under a laminar flow regime. Int. J. Heat Mass Transfer 2011, 54 (19), 4376-4388.
83. Li, Y.; Liang, J.; Tao, Z.; Chen, J., CuO particles and plates: synthesis and gas-sensor application. Mater. Res. Bull. 2008, 43 (8), 2380-2385.
84. Carnes, C. L.; Klabunde, K. J., The catalytic methanol synthesis over nanoparticle metal oxide catalysts. J. Mol. Catal. A: Chem. 2003, 194 (1), 227-236.
85. Maruyama, T., Copper oxide thin films prepared by chemical vapor deposition from copper dipivaloylmethanate. Sol. Energy Mater. Sol. Cells 1998, 56 (1), 85-92.
86. Borkow, G.; Gabbay, J., Putting copper into action: copper-impregnated products with potent biocidal activities. FASEB J. 2004, 18 (14), 1728-1730.
87. Gabbay, J.; Borkow, G.; Mishal, J.; Magen, E.; Zatcoff, R.; Shemer-Avni, Y., Copper oxide impregnated textiles with potent biocidal activities. J. Ind. Text. 2006, 35 (4), 323-335.
88. Reitz, J. B.; Solomon, E. I., Propylene oxidation on copper oxide surfaces: electronic and geometric contributions to reactivity and selectivity. J. Am. Chem. Soc. 1998, 120 (44), 11467-11478.
89. Bondarenko, O.; Juganson, K.; Ivask, A.; Kasemets, K.; Mortimer, M.; Kahru, A., Toxicity of Ag, CuO and ZnO nanoparticles to selected environmentally relevant test organisms and mammalian cells in vitro: a critical review. Arch. Toxicol. 2013, 87 (7), 1181-1200.
90. Westwood, M.; Roberts, D.; Parker, R., Enzymatic degradation of poly-l-lysine-polygalacturonic acid multilayers. Carbohydr. Polym. 2011, 84 (3), 960-969.
91. 黃國賢, Synthesis and application of polyethylene glycol/vinyltriethoxy silane (PEG/VTES) copolymers. Afr. J. Biotechnol. 2011, 10 (59), 12754-12761.
92. Huang, S.; Yang, L.; Liu, M.; Phua, S. L.; Yee, W. A.; Liu, W.; Zhou, R.; Lu, X., Complexes of polydopamine-modified clay and ferric ions as the framework for pollutant-absorbing supramolecular hydrogels. Langmuir 2013, 29 (4), 1238-1244.
93. Fu, J.; Chen, Z.; Wang, M.; Liu, S.; Zhang, J.; Zhang, J.; Han, R.; Xu, Q., Adsorption of methylene blue by a high-efficiency adsorbent (polydopamine microspheres): kinetics, isotherm, thermodynamics and mechanism analysis. Chem. Eng. J. 2015, 259, 53-61.
94. Nigam, S.; Barick, K.; Bahadur, D., Development of citrate-stabilized Fe3O4 nanoparticles: conjugation and release of doxorubicin for therapeutic applications. J. Magn. Magn. Mater. 2011, 323 (2), 237-243.
95. Sun, S.; Zhang, X.; Zhang, J.; Wang, L.; Song, X.; Yang, Z., Surfactant-free CuO mesocrystals with controllable dimensions: green ordered-aggregation-driven synthesis, formation mechanism and their photochemical performances. CrystEngComm 2013, 15 (5), 867-877.
96. Zhang, Y. X.; Kuang, M.; Wang, J. J., Mesoporous CuO–NiO micropolyhedrons: facile synthesis, morphological evolution and pseudocapcitive performance. CrystEngComm 2014, 16 (3), 492-498.
97. Zhu, Y.; Wang, Y.; Song, L.; Chen, X.; Liu, W.; Sun, J.; She, X.; Zhong, Z.; Su, F., Flower-like ZnO grown on urchin-like CuO microspheres for catalytic synthesis of dimethyldichlorosilane. RSC Advances 2013, 3 (25), 9794-9802.
98. Prathap, M. A.; Kaur, B.; Srivastava, R., Hydrothermal synthesis of CuO micro-/nanostructures and their applications in the oxidative degradation of methylene blue and non-enzymatic sensing of glucose/H2O2. J. Colloid Interface Sci. 2012, 370 (1), 144-154.
99. Rozenberg, M.; Shoham, G., FTIR spectra of solid poly-l-lysine in the stretching NH mode range. Biophys. Chem. 2007, 125 (1), 166-171.
100. Jordon, C. E.; Frey, B. L.; Kornguth, S.; Corn, R. M., Characterization of poly-L-lysine adsorption onto alkanethiol-modified gold surfaces with polarization-modulation Fourier transform infrared spectroscopy and surface plasmon resonance measurements. Langmuir 1994, 10 (10), 3642-3648.
101. Wang, C.; Feng, L.; Yang, H.; Xin, G.; Li, W.; Zheng, J.; Tian, W.; Li, X., Graphene oxide stabilized polyethylene glycol for heat storage. PCCP 2012, 14 (38), 13233-13238.
102. Ahmad, M. B.; Tay, M. Y.; Shameli, K.; Hussein, M. Z.; Lim, J. J., Green synthesis and characterization of silver/chitosan/polyethylene glycol nanocomposites without any reducing agent. Int J Mol Sci 2011, 12 (8), 4872-4884.
103. Shameli, K.; Bin Ahmad, M.; Jazayeri, S. D.; Sedaghat, S.; Shabanzadeh, P.; Jahangirian, H.; Mahdavi, M.; Abdollahi, Y., Synthesis and characterization of polyethylene glycol mediated silver nanoparticles by the green method. Int J Mol Sci 2012, 13 (6), 6639-6650.
104. Zangmeister, R. A.; Morris, T. A.; Tarlov, M. J., Characterization of polydopamine thin films deposited at short times by autoxidation of dopamine. Langmuir 2013, 29 (27), 8619-8628.
105. Wang, Q.; Tian, S.; Ning, P., Degradation mechanism of methylene blue in a heterogeneous Fenton-like reaction catalyzed by ferrocene. Ind. Eng. Chem. Res. 2013, 53 (2), 643-649.
106. Luo, Y.-R., Handbook of bond dissociation energies in organic compounds. CRC press: 2002.
107. Wang, S., A comparative study of Fenton and Fenton-like reaction kinetics in decolourisation of wastewater. Dyes Pigm. 2008, 76 (3), 714-720.
108. Hashemian, S., Fenton-Like Oxidation of Malachite Green Solutions: Kinetic and Thermodynamic Study. Journal of Chemistry 2013, 2013.
109. Medien, H. A.; Khalil, S. M., Kinetics of the oxidative decolorization of some organic dyes utilizing Fenton-like reaction in water. J. King Saud Univ. Sci. 2010, 22 (3), 147-153.
110. Burke, S. E.; Barrett, C. J., pH-responsive properties of multilayered poly (L-lysine)/hyaluronic acid surfaces. Biomacromolecules 2003, 4 (6), 1773-1783.
111. Hamada, I.; Kumagai, T.; Shiotari, A.; Okuyama, H.; Hatta, S.; Aruga, T., Nature of hydrogen bonding in hydroxyl groups on a metal surface. PhRvB 2012, 86 (7), 075432.
112. Zhu, M.; Meng, D.; Wang, C.; Di, J.; Diao, G., Degradation of methylene blue with H2O2 over a cupric oxide nanosheet catalyst. Chinese Journal of Catalysis 2013, 34 (11), 2125-2129.
113. Robinson, T.; McMullan, G.; Marchant, R.; Nigam, P., Remediation of dyes in textile effluent: a critical review on current treatment technologies with a proposed alternative. Bioresour. Technol. 2001, 77 (3), 247-255.
114. Lin, S.-H.; Juang, R.-S., Adsorption of phenol and its derivatives from water using synthetic resins and low-cost natural adsorbents: a review. J. Environ. Manage. 2009, 90 (3), 1336-1349.
115. Rashed, M. N., Adsorption technique for the removal of organic pollutants from water and wastewater. INTECH Open Access Publisher: 2013.
116. Marinho-Soriano, E.; Bourret, E., Effects of season on the yield and quality of agar from Gracilaria species (Gracilariaceae, Rhodophyta). Bioresour. Technol. 2003, 90 (3), 329-333.
117. Armisen, R., World-wide use and importance of Gracilaria. J. Appl. Phycol. 1995, 7 (3), 231-243.
118. Gehrke, S. H., Synthesis, equilibrium swelling, kinetics, permeability and applications of environmentally responsive gels. Adv. Polym. Sci. 1993, 110, 81-144.
119. Tabata, Y.; Ikada, Y., Protein release from gelatin matrices. Adv. Drug Del. Rev. 1998, 31 (3), 287-301.
120. Favre, E.; Girard, S., Release kinetics of low molecular weight solutes from mixed cellulose ethers hydrogels: a critical experimental study. European Polymer Journal 2001, 37 (8), 1527-1532.
121. Praiboon, J.; Chirapart, A.; Akakabe, Y.; Bhumibhamond, O.; Kajiwarac, T., Physical and chemical characterization of agar polysaccharides extracted from the Thai and Japanese species of Gracilaria. Sci Asia 2006, 32 (Suppl 1), 11-17.
122. Wu, H.-Q.; Wei, X.-W.; Shao, M.-W.; Gu, J.-S.; Qu, M.-Z., Synthesis of copper oxide nanoparticles using carbon nanotubes as templates. Chem. Phys. Lett. 2002, 364 (1), 152-156.
123. Zhang, Y. X.; Huang, M.; Li, F.; Wen, Z. Q., Controlled synthesis of hierarchical CuO nanostructures for electrochemical capacitor electrodes. Int. J. Electrochem. Sci 2013, 8, 8645-8661.
124. Zhao, B.; Liu, P.; Zhuang, H.; Jiao, Z.; Fang, T.; Xu, W.; Lu, B.; Jiang, Y., Hierarchical self-assembly of microscale leaf-like CuO on graphene sheets for high-performance electrochemical capacitors. J. Mater. Chem. 2013, 1 (2), 367-373.
125. Hsieh, S.; Huang, B.; Hsieh, S.; Wu, C.; Wu, C.; Lin, P.; Huang, Y.; Chang, C., Green fabrication of agar-conjugated Fe3O4 magnetic nanoparticles. Nanotechnology 2010, 21 (44), 445601.
126. Samiey, B.; Ashoori, F., Adsorptive removal of methylene blue by agar: effects of NaCl and ethanol. Chem. Cent. J. 2012, 6 (1), 14.
127. Shankar, S.; Teng, X.; Rhim, J.-W., Properties and characterization of agar/CuNP bionanocomposite films prepared with different copper salts and reducing agents. Carbohydr. Polym. 2014, 114, 484-492.
128. Volery, P.; Besson, R.; Schaffer-Lequart, C., Characterization of commercial carrageenans by Fourier transform infrared spectroscopy using single-reflection attenuated total reflection. J. Agric. Food. Chem. 2004, 52 (25), 7457-7463.
129. Kanmani, P.; Rhim, J.-W., Antimicrobial and physical-mechanical properties of agar-based films incorporated with grapefruit seed extract. Carbohydr. Polym. 2014, 102, 708-716.
130. Park, S.-H.; Kim, H. J., Unidirectionally aligned copper hydroxide crystalline nanorods from two-dimensional copper hydroxy nitrate. J. Am. Chem. Soc. 2004, 126 (44), 14368-14369.
131. Alcântara, M. T. S.; Giannini, D. R.; Brant, A. J.; Riella, H. G.; Lugão, A. B., Effect of different plasticizers on poly (N-vinyl-2-pyrrolidone) hydrogels cross-linked by radiation. 2011.
132. Liu, B.; Wen, L.; Nakata, K.; Zhao, X.; Liu, S.; Ochiai, T.; Murakami, T.; Fujishima, A., Polymeric Adsorption of Methylene Blue in TiO2 Colloids—Highly Sensitive Thermochromism and Selective Photocatalysis. Chem. Eur. J. 2012, 18 (40), 12705-12711.
133. van der Weele, C. M.; Spollen, W. G.; Sharp, R. E.; Baskin, T. I., Growth of Arabidopsis thaliana seedlings under water deficit studied by control of water potential in nutrient‐agar media. J. Exp. Bot. 2000, 51 (350), 1555-1562.
134. Steuter, A. A.; Mozafar, A.; Goodin, J. R., Water potential of aqueous polyethylene glycol. Plant Physiol. 1981, 67 (1), 64-67.
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:自定論文開放時間 user define
開放時間 Available:
校內 Campus:永不公開 not available
校外 Off-campus:永不公開 not available

您的 IP(校外) 位址是 52.14.126.74
論文開放下載的時間是 校外不公開

Your IP address is 52.14.126.74
This thesis will be available to you on Indicate off-campus access is not available.

紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 永不公開 not available

QR Code