Responsive image
博碩士論文 etd-0628115-124030 詳細資訊
Title page for etd-0628115-124030
論文名稱
Title
利用混合式電漿波導設計超微型極化旋轉器與極化偏振器
Ultrashort Polarization Rotator and Polarizer by Using Hybrid Plasmonic Waveguide
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
79
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2015-06-26
繳交日期
Date of Submission
2015-07-28
關鍵字
Keywords
極化偏振器、表面電漿波、混合式表面電漿波導、極化旋轉器、絕緣體上鍍矽
Hybrid Plasmonic Waveguide, Surface Plasmon Polariton, Polarizer, Polarization Rotator, Silicon on insulator
統計
Statistics
本論文已被瀏覽 5719 次,被下載 724
The thesis/dissertation has been browsed 5719 times, has been downloaded 724 times.
中文摘要
絕緣體上鍍矽(SOI)波導因為結構本身的高折射率對比造成較強的光場侷限特性,因此能夠有效地縮小光電元件尺寸,並應用於高密度的積體光路。然而,SOI波導本身存在強烈的極化相依特性,會嚴重降低光通訊系統的表現。為了解決極化相依特性對積體光路帶來的影響,過去提出了許多極化旋轉器與極化偏振器的相關研究,然而大部分的設計需要較長的元件尺寸才能得到較好的效率,使積體光路難以達到微型化的目的。
在本研究中,我們利用L形混合式電漿波導設計微型的模態耦合型極化旋轉器,藉由破壞波導結構的對稱性,以加大兩傾斜模態的模態等效折射率差,因此可以使極化旋轉器在極短的長度內達到高的極化旋轉效率。我們利用三維有限元素法(3D-FEM)來分析我們所設計的極化旋轉器,並優化元件結構設計,可以在元件長度為2.25 μm時,得到TE極化光轉TM極化光之極化旋轉效率99.4%以及插入損耗為2.6 dB。
同時,我們也利用雙層混合式電漿波導設計了TM極化偏振器,透過極化相依的特性,使TE極化光以反射及洩漏模態的方式消散,但TM極化光則會耦合成混合型的表面電漿波模態而能繼續在極化偏振器中傳播。透過3D-FEM優化元件結構,我們可以在元件長度為1 μm時,得到TM極化偏振器的極化消光比為17.2 dB以及插入損耗1.92 dB。本論文成功地利用混合式電漿波導設計了超微型的極化旋轉器與極化偏振器,相較於一般極化旋轉器與極化偏振器,我們所提出的元件長度更短,更能有助於積體光路的微型化。
Abstract
Silicon on insulator (SOI) structures is proven to be a very promising technology for developing high-density photonic integrated circuits (PICs). Due to the high index contract and low loss, SOI structures can reduce the device size. However, SOI devices possess strong polarization dependence, which may degrade the performance of optical communication systems. To overcome this drawback, various types of SOI-based polarization rotators and polarizers have been proposed with long device lengths.
We first propose an ultracompact polarization rotator based on an L-shaped asymmetric hybrid plasmonic waveguide. The simulation is carried out by a three-dimensional finite element method (3D-FEM, COMSOL Multiphysics) to optimize the device performance. Due to the plasmonic effect and asymmetric L-shaped waveguide, two hybrid modes with enlarged modal index difference are induced to shorten the device length. We can realize an ultrashort rotator length of 2.35μm with the polarization conversion efficiency is 99.4% and the insertion loss is 2.6 dB。
We have also proposed an ultracompact TM polarizer based on a double hybrid plasmonic waveguide which only supports TM mode between two silicon dielectric waveguides. Meanwhile, the TE mode is cutoff on the TM polarizer. The simulation is also carried out by the 3D-FEM to analyze the polarizer properties and optimize the polarizer. The optimized design shows that, as the device length is 1 µm, we can obtain the extinction ratio and insertion loss are 17.2 dB and 1.92 dB, respectively.
We successfully utilize the hybrid plasmonic waveguide to design ultrashort polarization rotator and polarizer. The device length of our proposed polarization rotator and polarizer are very short compared to the conventional silicon-based polarization devices, which can help to realize high-density PICs.
目次 Table of Contents
誌謝 i
中文摘要 ii
Abstract iii
目錄 v
圖目錄 vi
第一章 緒論 1
1.1 Silicon on insulator 光波導 1
1.2 極化分集系統與極化偏振器 2
1.3 極化旋轉器 4
1.4 混合式表面電漿波元件 8
1.5 研究動機 13
第二章 表面電漿波 14
2.1 表面電漿共振模態 14
2.2 表面電漿波之激發方法 23
第三章 以L形混合式電漿波導設計極化旋轉器 27
3.1 非對稱結構極化轉換器 27
3.2 L形混合式電漿波導極化旋轉器之數值分析 31
3.3 製程容忍度 42
第四章 以雙層混合式電漿波導設計TM極化偏振器 49
4.1 混合式電漿波導極化偏振器 49
4.2 雙層混合式電漿波導TM極化偏振器之數值分析 51
第五章 結論 62
參考文獻 63
參考文獻 References
[1] S. E. Miller, “Integrated optics: an introduction,” Bell Syst. Tech. J., vol. 48, pp. 2059-2068, 1969.
[2] R. A. Soref, J. Schmidtchen, and K. Petermann, “Large single-mode rib waveguides in GeSi-Si and Si-on-SiO2,” IEEE J. Quantum Electron., vol. 27, pp. 242-246, 2008.
[3] H. Fukuda, K. Yamada, T. Tsuchizawa, T Watanabe, H. Shinojima, and S.-I. Itabashi, “Silicon photonic circuit with polarization diversity,” Opt. Express, vol. 16, pp. 4872-4880, 2008.
[4] S. I. H. Azzam, M. F. O. Hameed, N. F. F. Areed, M. M. Abd-Elrazzak, H. A. El-Mikaty, and S. S. A. Obayya, “Proposal of an ultracompact CMOS-compatible TE-/TM-pass polarizer based on SOI platform,” IEEE Photon. Technol. Lett., vol. 26, pp. 1633-1636, 2014.
[5] J. Zhang, M. Yu, G.-Q. Lo, and D.-L. Kwong, “Silicon-waveguide-based mode evolution,” IEEE J. Sel. Top. Quantum Electron., vol. 16, pp. 53-60, 2010.
[6] A. V. Velasco, M. L. Calvo, P. Cheben, A. Ortega-Moñux, J. H. Schmid, C. A. Ramos, Í. M. Fernandez, J. Lapointe, M. Vachon, S. Janz, and D.-X. Xu, “Ultracompact polarization converter with a dual subwavelength trench built in a silicon-on-insulator waveguide,” Opt. Lett., vol. 37, pp. 365-367, 2012.
[7] L. Liu, Y. Ding, K. Yvind, and J. M. Hvam, “Silicon-on-insulator polarization splitting and rotating device for polarization diversity circuits,” Opt. Express, vol. 19, pp. 12646-12651, 2011.
[8] M. F. O. Hameed, S. S. A. Obayya, and R. J.Wiltshire, “Beam propagation analysis of polarization rotation in soft glass nematic liquid crystal photonic crystal fibers,” IEEE Photon. Technol. Lett., vol. 22, pp. 188-190, 2010.
[9] M. F. Hameed, M. Abdelrazzak, and S. S. A. Obayya, “Novel design of ultra-compact triangular lattice Silica photonic crystal polarization converter,” J. Lightwave Technol., vol. 31, pp. 81-86, 2013.
[10] M. F. Hameed and S. S. Obayya, “Ultrashort silica liquid crystal photonic crystal fiber polarization rotator,” Opt. Lett., vol. 39, pp. 1077-1080, Feb 15 2014.
[11] E. Betzing and J. K. Trautman, “Near-field optics: microscopy, spectroscopy, and surface modification beyond the diffraction limit,” Science, vol. 257, pp. 189-195, 1992.
[12] K. Kneipp, Y. Wang, H. Kneipp, L. T. Perelman, I. Itzkan, R. R. Dasari, and M. S. Feld, “Single molecule detection using surface-enhanced raman scattering ” Phys. Rev. Lett., vol. 78, pp. 1667-1670, 1997.
[13] J. Homola, “Present and future of surface plasmon resonance biosensors,” Analytical and Bioanalytical Chemistry, vol. 377, pp. 528-539, 2003.
[14] S. Kawata, M. Ohtsu, and M. Irie, Nano-Optics. Springer-Verlag, New York, 2002.
[15] P. N. Prasad, Nanophotonics. John Wiley, New Jersey, 2004.
[16] L. Liu, Z. Han, and S. He, “Novel surface plasmon waveguide for high integration,” Opt. Express, vol. 13, pp. 6645-6650, 2005.
[17] R. F. Oulton, V. J. Sorger, D. A. Genov, D. F. P. Pile, and X. Zhang, “A hybrid plasmonic waveguide for subwavelength confinement and long-range propagation,” Nature Photon., vol. 2, pp. 496-500, 2008.
[18] D. Dai and S. He, “A silicon-based hybrid plasmonic waveguide with a metal cap for a nano-scale light confinement,” Opt. Express, vol. 17, pp. 16646-16653, 2009.
[19] R. Sun, P. Dong, N.-N. Feng, C.-Y. Hong, J. Michel, M. Lipson, and L. Kimerling, “Horizontal single and multiple slot waveguides: optical transmission at λ = 1550 nm,” Opt. Express, vol. 15, pp. 17967-17972, 2007.
[20] M. Komatsu, K. Saitoh, and M. Koshiba, “Compact polarization rotator based on surface plasmon polariton with low insertion loss,” IEEE Photon. J., vol. 4, pp. 707-714, 2012.
[21] X. Guan, H. Wu, Y. Shi, L. Wosinski, and D. Dai, “Ultracompact and broadband polarization beam splitter utilizing the evanescent coupling between a hybrid plasmonic waveguide and a silicon nanowire,” Opt. Lett., vol. 38, pp. 3005-3008, Aug 15 2013.
[22] X. Tu, S. S. N. Ang, A. B. Chew, J. Teng, and T. Mei, “An ultracompact directional coupler based on GaAs cross-slot waveguide,” IEEE Photon. Technol. Lett., vol. 22, pp. 1324-1326, 2010.
[23] M. Z. Alam, J. S. Aitchison, and M. Mojahedi, “Compact and silicon-on-insulator-compatible hybrid plasmonic TE-pass polarizer,” Opt. Lett., vol. 37, pp. 55-57, 2012.
[24] R. W. Wood, “On a remarkable case of uneven distribution of light in a diffraction grating spectrum,” Pro. Phy. Soc. London, vol. 18, pp. 269-275, 1902.
[25] U. Fano, “The theory of anomalous diffraction gratings and of quasi-stationary waves on metallic surfaces,” J. Opt. Soc. Am., vol. 31, pp. 213-222, 1941.
[26] E. Kretschmann and H. Raether, “Radiative decay of non radiative surface plasmons excited by light, ” Z. Naturforsch, vol. A 23, pp. 2135-2136, 1968.
[27] E. K. Akowuah, T. Gorman, and S. Haxha, “Design and optimization of a novel surface plasmon resonance biosensor based on Otto configuration,” Opt. Express, vol. 17, pp. 23511-23521, 2009.
[28] A. Partovi, D. Peale, M. Wuttig, C. A. Murray, G. Zydzik, L. Hopkins, K. Baldwin, W. S. Hobson, J. Wynn, J. Lopata, L. Dhar, R. Chichester, and J. H. J. Yeh, “High-power laser light source for near-field optics and its application to high-density optical data storage,” App. Phys. Lett., vol. 75, pp. 1515-1517, 1999.
[29] A. Partovi and D. Peale, “A low-cost, high-efficiency solar cell based on dye-sensitized,” Nature, vol. 353, pp. 737-740, 1991.
[30] W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature, vol. 424, pp. 824-830, 2003.
[31] J. R. Sambles, G. W. Bradbery, and F. Yang, “Optical excitation of surface plasmons:an introduction,” Contemp. Phys., vol. 32, pp. 173-183, 1991.
[32] V. M. Shalaev, W. C. Chettiar, H.-K. Yuan, A. K. Sarychev, V. P. Drachev, and A. V. Kildishev, “Negative index of refraction in optical metamaterials,” Opt. Lett., vol. 30, pp. 3356-3358, 2005.
[33] R. F. Wallis and G. I. Stegeman, Electromagnetic surface excitations. Springer-Verlag, New York, 1985.
[34] J. A. Porto, F. J. Garcia-Vidal, and J. B. Pendry, “Transmission resonances on metallic gratings with very narrow slits,” Phys. Rev. Lett., vol. 83, pp. 2845-2848, 1999.
[35] K. Tawa, H. Hori, K. Kintaka, K. Kiyosue, Y. Tatsu, and J. Nishii, “Optical microscopic observation of fluorescence enhanced by grating coupled surface plasmon resonance,” Opt. Express, vol. 16, pp. 9781-9789, 2008.
[36] J. Homola, I. Koudela, and S. S. Yee, “Surface plasmon resonance sensors based on diffraction gratings and prism couplers: sensitivity comparison,” Elsevier Science, vol. 54, pp. 16-24, 1999.
[37] H. Fukuda, K. Yamada, T. Tsuchizawa, T. Watanabe, H. Shinojima, and S.-I. Itabashi, “Polarization rotator based on silicon wire waveguides,” Opt. Express, vol. 16, pp. 2628-2635, 2008.
[38] M. R. Watts and H. A. Haus, “Integrated mode-evolution-based polarization rotators,” Opt. Lett., vol. 30, pp. 138-140, 2005.
[39] L. Jin, Q. Chen, and L. Wen, “Mode-coupling polarization rotator based on plasmonic waveguide,” Opt. Lett., vol. 39, pp. 2798-2801, 2014.
[40] L. Gao, Y. Huo, J. S. Harris, and Z. Zhou, “Ultra-compact and low-loss polarization rotator based on asymmetric hybrid plasmonic waveguide,” IEEE Photon. Technol. Lett., vol. 25, pp. 2081-2084, 2013.
[41] H. Deng, D. O. Yevick, C. Brooks, and P. E. Jessop, “Design rules for slanted-angle polarization rotators,” J. Lightwave Technol., vol. 23, pp. 432-445, 2005.
[42] Y. Huang, S. Zhu, H. Zhang, T. Y. Liow, and G. Q. Lo, “CMOS compatible horizontal nanoplasmonic slot waveguides TE-pass polarizer on silicon-on-insulator platform,” Opt. Express, vol. 21, pp. 12790-12796, 2013.
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:自定論文開放時間 user define
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus: 已公開 available


紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code