Responsive image
博碩士論文 etd-0628115-142157 詳細資訊
Title page for etd-0628115-142157
論文名稱
Title
胚胎發育時期過氧化氫促進神經滋養因子IGF-1釋放分子機制之研究
Studies on the molecular mechanism of hydrogen peroxide-induced IGF-1 secretion from myocyte at developing neuromuscular synapse.
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
92
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2015-06-11
繳交日期
Date of Submission
2015-07-28
關鍵字
Keywords
活性氧化物、過氧化氫、IGF-1、神經滋養因子
Neurotrophic factor, Hydrogen peroxide, Insulin-like growth factor 1, Reactive oxygen species
統計
Statistics
本論文已被瀏覽 5672 次,被下載 80
The thesis/dissertation has been browsed 5672 times, has been downloaded 80 times.
中文摘要
肌肉細胞與運動神經在形成突觸的過程中,需要突觸前與突觸後的神經傳遞物質以及滋養因子相互交流以促進突觸的成熟。研究顯示過氧化氫(H2O2)在這個過程中是擔任重要的訊息傳遞分子。H2O2為一種可穿透細胞膜的活性氧化物 (ROS),它可經由細胞內粒線體呼吸作用、細胞上NADPH oxidase、嘌呤 (purine) 代謝酵素 xanthine oxidase 作用中生成。H2O2較人為常知的是它對於細胞毒性的部分,例如 DNA 損傷、細胞膜的過氧化、細胞老化等,然而其正常生理角色的研究較為少。之前的實驗已證實,H2O2會促進神經的神經自發性傳遞物質乙醯膽鹼 (ACh) 的釋放,而這一個過程與肌肉細胞內所釋放的IGF-1是有關的。先前另一個實驗結果顯示,肌細胞內的H2O2濃度上升和促進神經傳遞釋放有關以及與肌肉細胞內的鈣離子有關。然而很令人好奇的是,H2O2是否造成肌肉細胞內鈣離子的濃度上升,導致IGF-1的釋放,然後進一步影響神經的活性則不是那麼清楚,所以本研究將往這方面探討。
本實驗中,我們利用發育中爪蟾神經-肌突觸細胞培養,以西方墨點法以及單一離子通道電流紀錄方法的方式來探討H2O2促進神經滋養因子IGF (Insulin-like growth factor 1) 釋放分子機制之研究。實驗會從conditioned medium中萃取分泌至細胞外的IGF-1,以西方墨點法來測不同條件下的蛋白質含量,以及利用單通道紀錄去探討不同條件下通道的改變。實驗結果中,H2O2在誘導神經滋養因子釋放時,與細胞內鈣離子濃度的上升是有關係的,當給予不可穿膜的鈣離子螯合劑BAPTA-AM降低細胞內鈣離子濃度之後,發現會降低H2O2的促進作用,此時IGF-1釋放的量減少,顯示肌細胞內的Ca2+的存在與H2O2促進IGF-1的釋放有關,因此,進一步將胞外溶液置換成不含鈣離子的Ca2+-free Ringer之後,阻斷了細胞外鈣離子的來源,實驗結果發現IGF-1釋放的量也減少,這時在不含鈣離子的Ca2+-free Ringer的culture中加入CaCl2後,發現IGF-1釋放的量有顯著回升,由以上結果顯示H2O2促進肌肉細胞釋放IGF-1,是與細胞外的鈣離子流入到細胞內,造成細胞內鈣離子的濃度上升有很大的關係。而進一步的研究顯示,H2O2促進肌肉細胞釋放IGF-1的作用,會因為同時給予H2O2以及ACh而有加強的作用;由於鈣離子進入細胞需經由通道才能進入細胞內,所以當以乙醯膽鹼通道抑制劑氯化筒箭毒鹼Tubocurarine chloride(d-Tc)抑制ACh通道後,ACh的通道會被抑制,使得H2O2無法促進肌肉細胞釋放IGF-1,接著於處理d-Tc之後的culture中加入H2O2,實驗發現也沒有達到促進肌肉細胞釋放IGF-1的效果。結果顯示出H2O2促進肌肉細胞內鈣離子濃度的上升,與ACh通道的開啟有關。接著,單一離子通道的實驗結果表明,ACh通道會自發性的開啟,當給予ACh時ACh通道開啟次數變多,顯示當運動神經靠近肌肉細胞時,所釋放的ACh會促使ACh通道開啟的頻率變高。當ACh促使ACh通道開啟後再給予H2O2之後,實驗發現ACh通道開啟的頻率更高,顯示H2O2會影響ACh通道,讓通道開啟頻繁促使鈣離子由細胞外往細胞內移動,使細胞內的鈣離子濃度增加。由以上結果推斷,H2O2要促進神經滋養因子IGF-1的釋放,會經由H2O2使肌肉細胞外的鈣離子通過ACh通道的開啟而流入肌肉細胞內,使肌肉細胞內的鈣離子濃度上升,進而促進神經滋養因子IGF-1的釋放。
總結實驗結果顯示,神經滋養因子IGF-1在胚胎發育的早期,扮演促進肌肉細胞和運動神經之間突觸形成的重要角色,當運動神經與肌肉細胞形成突觸時,神經突觸會釋放出乙醯膽鹼(ACh)作用於肌肉細胞,使肌肉細胞收縮接著產生過氧化氫(H2O2)進而促進IGF-1釋放。
Abstract
Successful synaptic transmission at the neuromuscular junction depends on the trophic interaction of the nerve terminals with the postsynaptic specialization of the muscle fiber. We have previously demonstrated that muscle-derived IGF-1 is important in the regulation of spontaneous synaptic transmission at developing neuromuscular synapse. However, the signaling cascades underlying IGF-1 secretion from muscle cells is still a mystery. Our recent results also showed the byproduct of oxidative phosphorylation hydrogen peroxide (H2O2) elicits a muscle-dependent increase in the synaptic activity in 1-day Xenopus motoneuron-muscle coculture and IGF-1 might be the “transducer” of H2O2–induced, muscle-dependent facilitation in the frequency of spontaneous synaptic currents (SSCs). Here we dedicate to explore the role and molecular mechanism of H2O2 in myocyte-derived IGF-1 secretion by measure the IGF-1 protein level in the conditioned medium of day-1 Xenopus myocyte culture using western blotting analysis. Bath application of H2O2 dose-dependently enhances the IGF-1 content in the conditioned medium and reaches its maximal enhancement in IGF-1 secretion at 100 microM. Pretreatment of the culture with Ca2+ chelator BAPTA-AM significantly hampered the H2O2-induced IGF-1 secretion. Moreover, exclusion of Ca2+ from culture medium abolish the IGF-1 content in the medium after H2O2 application, suggesting Ca2+ influx play a crucial role in H2O2-induced IGF-1 secretion. The effect of H2O2-induced IGF-1 secretion was significantly reduced when ACh channel blocker d-Tubocurarine is applied to the medium. The activity of ACh channel recorded by cell-attached patch clamp is dose-dependently increase by ACh and, much to our surprise, the ACh channel open spontaneously even when ACh is absent in the pipette. Furthermore, the frequency of channel opening but not amplitude and dwell time is facilitated by H2O2. Overall, results from this study reveal a reciprocal interaction between presynaptic motoneuron and postsynaptic myocyte which promote the development of neuromuscular synapse. The oxidative phosphorylation byproduct H2O2 increase as the muscle is innervated by motoneuron during early synaptogenesis. The secretion of neurotrophic factor IGF-1 from muscle cell is elicited by H2O2-induced cytosolic Ca2+ rise through facilitation of Ca2+-permeable ACh channel.
目次 Table of Contents
論文審定書 i
中文摘要 ii
Abstract iv
圖表目錄 vii
縮寫表 viii
第一章 緒論 1
氧化自由基 (Free radicals) 1
活性氧化物質 (Reactive oxygen species) 2
ROS來源 3
抗氧化系統 5
過氧化氫 (Hydrogen peroxide) 6
過氧化氫對發育成熟的神經-肌突觸之影響 7
IGF-1 (Insulin-like growth factor 1) 8
IGF-1對神經-肌突觸發育初期之影響 9
鈣離子及鈣離子介導信號傳遞 10
鈣離子引發囊泡胞吐作用 10
乙醯膽鹼受體 (Acetylcholine receptor, AChR) 11
研究目的 13
第二章 實驗材料及方法 14
I. 材料 14
II. 試劑儀器及供應商 16
III. 實驗方法 18
A. 電生理紀錄方法 18
B. 西方墨點法 19
C. IGF-1/pDsRed螢光重組質體之製備 24
第三章 實驗結果 30
第四章 討論 39
第五章 參考文獻 45
第六章 附錄 54
參考文獻 References
Afanas'ev I (2010a) Signaling and Damaging Functions of Free Radicals in Aging-Free Radical Theory, Hormesis, and TOR. Aging and disease 1:75-88.
Afanas'ev I (2010b) Signaling of reactive oxygen and nitrogen species in Diabetes mellitus. Oxidative medicine and cellular longevity 3:361-373.
Anderson MJ, Cohen MW, Zorychta E (1977) Effects of innervation on the distribu tion of acetylcholine receptors on cultured muscle cells. The Journal of physiology 268:731-756.
Auerbach, JM, Segal, M (1997) Peroxide modulation of slow onset potentiation in rat hippocampus. J Neurosci 17: 8695-8701.
Bleau G, Giasson C, Brunette I (1998) Measurement of hydrogen peroxide in biological samples containing high levels of ascorbic acid. Anal Biochem 263: 13-17.
Banker G, Goslin K (1998) Culturing nerve cells. MIT Press, Cambridge, Mass.
Bukharaeva EA, Samigullin D, Nikolsky EE, Magazanik LG (2007) Modulation of the kinetics of evoked quantal release at mouse neuromuscular junctions by calcium and strontium. Journal of neurochemistry 100:939-949.
Bao L, Avshalumov MV, Patel JC, Lee CR, Miller EW, Chang CJ, Rice ME (2009) Mitochondria are the source of hydrogen peroxide for dynamic brain-cell signaling. The Journal of neuroscience 29:9002-9010.
Berlett BS, Stadtman ER (1997) Protein oxidation in aging, disease, and oxidative stress. The Journal of biological chemistry 272:20313-20316.
Bae YS, Kang SW, Seo MS, Baines IC, Tekle E, Chock PB, Rhee SG (1997) Epidermal growth factor (EGF)-induced generation of hydrogen peroxide. Role in EGF receptor-mediated tyrosine phosphorylation. The Journal of biological chemistry 272:217-221.
Brown DM, Donaldson K, Borm PJ, Schins RP, Dehnhardt M, Gilmour P, Jimenez LA, Stone V (2004) Calcium and ROS-mediated activation of transcription factors and TNF-alpha cytokine gene expression in macrophages exposed to ultrafine particles. American journal of physiology Lung cellular and molecular physiology 286:L344-353.
Boveris A, Oshino N, Chance B (1972) The cellular production of hydrogen peroxide. The Biochemical journal 128:617-630.
Cotterill LA, Gower JD, Fuller BJ, Green CJ (1990) Evidence that calcium mediates free radical damage through activation of phospholipase A2 during cold storage of the rabbit kidney. Advances in experimental medicine and biology 264:397-400.
Cai J, Jones DP (1998) Superoxide in apoptosis. Mitochondrial generation triggered by cytochrome c loss. The Journal of biological chemistry 273:11401-11404.
Cotgreave IA, Moldeus P, Orrenius S (1988) Host biochemical defense mechanisms against prooxidants. Annual review of pharmacology and toxicology 28:189-212.
Dymkowska D, Szczepanowska J, Wieckowski MR, Wojtczak L (2006) Short-term and long-term effects of fatty acids in rat hepatoma AS-30D cells: the way to apoptosis. Biochimica et biophysica acta 1763:152-163.
Droge W (2002) Free radicals in the physiological control of cell function. Physiological reviews 82:47-95.
Delafontaine P, Ku L (1997) Reactive oxygen species stimulate insulin-like growth factor I synthesis in vascular smooth muscle cells. Cardiovasc Res 33: 216-222.
Evers J, Laser M, Sun YA, Xie ZP, Poo MM (1989) Studies of nerve-muscle interactions in Xenopus cell culture: analysis of early synaptic currents. J Neurosci 9:1523-1539.
Freeman BA, Crapo JD (1982) Biology of disease: free radicals and tissue injury. Laboratory investigation; A journal of technical methods and pathology 47:412-426.
Fu WM, Huang FL (1994) Potentiation by endogenously released ATP of spontaneous transmitter secretion at developing neuromuscular synapses in Xenopus cell cultures. British journal of pharmacology 111:880-886.
Giniatullin AR, Giniatullin RA (2003) Dual action of hydrogen peroxide on synaptic transmission at the frog neuromuscular junction. The Journal of physiology 552:283-293.
Giniatullin AR, Grishin SN, Sharifullina ER, Petrov AM, Zefirov AL, Giniatullin RA (2005) Reactive oxygen species contribute to the presynaptic action of extracellular ATP at the frog neuromuscular junction. The Journal of physiology 565:229-242.
Gautam DK, Misro MM, Chaki SP, Sehgal N (2006) H2O2 at physiological concentrations modulates Leydig cell function inducing oxidative stress and apoptosis. Apoptosis 11: 39-46.
Hamill OP, Marty A, Neher E, Sakmann B, Sigworth FJ (1981) Improved patch-clamp techniques for high-resolution current recording from cells and cell-free membrane patches. Pflugers Arch: European journal of physiology 391:85-100.
Hensley K, Carney JM, Mattson MP, Aksenova M, Harris M, Wu JF, Floyd RA, Butterfield DA (1994) A model for beta-amyloid aggregation and neurotoxicity based on free radical generation by the peptide: relevance to Alzheimer disease. Proceedings of the National Academy of Sciences of the United States of America 91:3270-3274.
Harman D (1956) Aging: a theory based on free radical and radiation chemistry. Journal of gerontology 11:298-300.
Harman D (1973) Free radical theory of aging. Triangle; the Sandoz journal of medical science 12:153-158.
Harman D (2009) Origin and evolution of the free radical theory of aging: a brief personal history, 1954-2009. Biogerontology 10:773-781.
Higuchi M, Honda T, Proske RJ, Yeh ET (1998) Regulation of reactive oxygen species-induced apoptosis and necrosis by caspase 3-like proteases. Oncogene 17:2753-2760.
Henderson CE (1996) Role of neurotrophic factors in neuronal development. Curr. Opin. Neurobiol 6: 67-70.
Ishii DN (1989) Relationship of insulin-like growth factor II gene expression in muscle to synaptogenesis. Proc Natl Acad Sci U S A 86: 2898-2902.
Jagtap JC, Chandele A, Chopde BA, Shastry P (2003) Sodium pyruvate protects against H2O2 mediated apoptosis in human neuroblastoma cell line-SK-N-MC. J Chem Neuroanat 26: 109-118.
Jackson MJ (2011) Control of reactive oxygen species production in contracting skeletal muscle. Antioxidants & redox signaling 15:2477-2486.
Konishi H, Tanaka M, Takemura Y, Matsuzaki H, Ono Y, Kikkawa U, Nishizuka Y (1997) Activation of protein kinase C by tyrosine phosphorylation in response to H2O2. Proceedings of the National Academy of Sciences of the United States of America 94:11233-11237.
Kowaltowski AJ, Castilho RF, Grijalba MT, Bechara EJ, Vercesi AE (1996) Effect of inorganic phosphate concentration on the nature of inner mitochondrial membrane alterations mediated by Ca2+ ions. A proposed model for phosphate-stimulated lipid peroxidation. The Journal of biological chemistry 271:2929-2934.
Kress M, Riedl B, Reeh PW (1995) Effects of oxygen radicals on nociceptive afferents in the rat skin in vitro. Pain 62:87-94.
Kemmerling U, Munoz P, Muller M, Sanchez G, Aylwin ML, Klann E, Carrasco MA, Hidalgo C (2007) Calcium release by ryanodine receptors mediates hydrogen peroxide-induced activation of ERK and CREB phosphorylation in N2a cells and hippocampal neurons. Cell calcium 41:491-502.
Kodama M, Kamioka Y, Nakayama T, Nagata C, Morooka N, Ueno Y (1987) Generation of free radical and hydrogen peroxide from 2-hydroxyemodin, a direct-acting mutagen, and DNA strand breaks by active oxygen. Toxicology letters 37:149-156.
Koloatsis V., Clatterbuck RE, Winslow JW, Cayouette MH, Price DL (1993) Evidence that brain-derived neurotrophic factor is a trophic factor for motor neurons in vivo. Neuron 10: 359-367.
Liou JC, Tsai FZ, Ho SY (2003) Potentiation of quantal secretion by insulin-like growth factor-1 at developing motoneurons in Xenopus cell culture. The Journal of physiology 553:719-728.
Lu B, Je HS (2003) Neurotrophic regulation of the development and function of the neuromuscular synapses. Journal of neurocytology 32:931-941.
Laufer R, Changeux JP (1987) Calcitonin gene-related peptide elevates cyclic AMP levels in chick skeletal muscle: possible neurotrophic role for a coexisting neuronal messenger. The EMBO journal 6:901-906.
Li C, Jackson RM (2002) Reactive species mechanisms of cellular hypoxia-reoxygenation injury. American journal of physiology Cell physiology 282:C227-241.
MacMicking JD, Nathan C, Hom G, Chartrain N, Fletcher DS, Trumbauer M, Stevens K, Xie QW, Sokol K, Hutchinson N, et al. (1995) Altered responses to bacterial infection and endotoxic shock in mice lacking inducible nitric oxide synthase. Cell 81:641-650.
McCord JM, Fridovich I (1969) Superoxide dismutase. An enzymic function for erythrocuprein (hemocuprein). The Journal of biological chemistry 244:6049-6055.
Medow MS, Bamji N, Clarke D, Ocon AJ, Stewart JM (2011) Reactive oxygen species (ROS) from NADPH and xanthine oxidase modulate the cutaneous local heating response in healthy humans. J Appl Physiol (1985) 111:20-26.
Munnamalai V, Suter DM (2009) Reactive oxygen species regulate F-actin dynamics in neuronal growth cones and neurite outgrowth. Journal of neurochemistry 108:644-661.
Milton VJ, Jarrett HE, Gowers K, Chalak S, Briggs L, Robinson IM, Sweeney ST (2011) Oxidative stress induces overgrowth of the Drosophila neuromuscular junction. Proceedings of the National Academy of Sciences of the United States of America 108:17521-17526.
Milton VJ, Sweeney ST (2012) Oxidative stress in synapse development and function. Developmental neurobiology 72:100-110.
Mittal CK, Murad F (1977) Activation of guanylate cyclase by superoxide dismutase and hydroxyl radical: a physiological regulator of guanosine 3',5'-monophosphate formation. Proceedings of the National Academy of Sciences of the United States of America 74:4360-4364.
Massaad CA, Klann E (2011) Reactive oxygen species in the regulation of synaptic plasticity and memory. Antioxidants & redox signaling 14:2013-2054.
Malhotra JD, Kaufman RJ (2007) Endoplasmic reticulum stress and oxidative stress: a vicious cycle or a double-edged sword? Antioxidants & redox signaling 9:2277-2293.
McMahon SB, Priestley JV (1995) Peripheral neuropathies and neurotrophic factors: animal models and clinical perspectives. Curr. Opin. Neurobiol 5: 616-624.
Nikolsky EE, Vyskocil F, Bukharaeva EA, Samigullin D, Magazanik LG (2004) Cholinergic regulation of the evoked quantal release at frog neuromuscular junction. The Journal of physiology 560:77-88.
Nastuk MA, Fallon JR (1993) Agrin and the molecular choreography of synapse formation. Trends in neurosciences 16:72-76.
Nakano M (1992) Free radicals and their biological significance: present and future. Human cell 5:334-340.
Palmer RM, Ferrige AG, Moncada S (1987) Nitric oxide release accounts for the biological activity of endothelium-derived relaxing factor. Nature 327:524-526.
Samigullin D, Bukharaeva EA, Vyskocil F, Nikolsky EE (2005) Calcium dependence of uni-quantal release latencies and quantal content at mouse neuromuscular junction. Physiological research / Academia Scientiarum Bohemoslovaca 54:129-132.
Spitzer NC, Lamborghini JE (1976) The development of the action potential mechanism of amphibian neurons isolated in culture. Proceedings of the National Academy of Sciences of the United States of America 73:1641-1645.
Servitja JM, Masgrau R, Pardo R, Sarri E, Picatoste F (2000) Effects of oxidative stress on phospholipid signaling in rat cultured astrocytes and brain slices. Journal of neurochemistry 75:788-794.
Sundaresan M, Yu ZX, Ferrans VJ, Irani K, Finkel T (1995) Requirement for generation of H2O2 for platelet-derived growth factor signal transduction. Science 270:296-299.
Sudha K, Rao AV, Rao S, Rao A (2003) Free radical toxicity and antioxidants in Parkinson's disease. Neurology India 51:60-62.
Sendtner M, Schmalbruch H, Stockli KA, Carroll P, Kreutzberg GW, Thoenen H (1992) Ciliary neurotrophic factor prevents degeneration of motor neurons in mouse mutant progressive motor neuropathy. Nature 358: 502-4.
Takahashi T, Nakajima Y, Hirosawa K, Nakajima S, Onodera K (1987) Structure and physiology of developing neuromuscular synapses in culture. J. Neurosci 7: 473-81.
Tsentsevitsky A, Nikolsky E, Giniatullin R, Bukharaeva E (2011) Opposite modulation of time course of quantal release in two parts of the same synapse by reactive oxygen species. Neuroscience 189:93-99.
Tretter L, Adam-Vizi V (1996) Early events in free radical-mediated damage of isolated nerve terminals: effects of peroxides on membrane potential and intracellular Na+ and Ca2+ concentrations. Journal of neurochemistry 66:2057-2066.
Wang T, Xie Z, Lu B (1995) Nitric oxide mediates activity-dependent synaptic suppression at developing neuromuscular synapses. Nature 374:262-266.
Wu H, Xiong WC, Mei L (2010) To build a synapse: signaling pathways in neuromuscular junction assembly. Development 137:1017-1033.
Wilcox CS, Welch WJ, Murad F, Gross SS, Taylor G, Levi R, Schmidt HH (1992) Nitric oxide synthase in macula densa regulates glomerular capillary pressure. Proceedings of the National Academy of Sciences of the United States of America 89:11993-11997.
Weiss SJ (1986) Oxygen, ischemia and inflammation. Acta physiologica Scandinavica Supplementum 548:9-37.
White AA, Crawford KM, Patt CS, Lad PJ (1976) Activation of soluble guanylate cyclase from rat lung by incubation or by hydrogen peroxide. The Journal of biological chemistry 251:7304-7312.
Xie ZP, Poo MM (1986) Initial events in the formation of neuromuscular synapse: rapid induction of acetylcholine release from embryonic neuron. Proc Natl Sci USA 83:7069-7073.
Yan Q, Elliott J, Snider WD (1992) Brain-derived neurotrophic factor rescues spinal motoneurons from axotomy induced cell death. Nature 360: 753-755.
Zhong J, Lee WH (2007) Hydrogen peroxide attenuates insulin-like growth factor-1 neuroprotective effect, prevented by minocycline. Neurochem Int 51: 398-404.
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:自定論文開放時間 user define
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus: 已公開 available


紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code