Responsive image
博碩士論文 etd-0628115-145045 詳細資訊
Title page for etd-0628115-145045
論文名稱
Title
聚合物薄膜添加二氧化矽奈米粒子產生隨機雷射之研究
Random Lasing from Polymer Film Embedded with Silicon Dioxide Nanoparticles
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
70
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2015-07-27
繳交日期
Date of Submission
2015-07-28
關鍵字
Keywords
二氧化矽、奈米粒子、隨機雷射、聚合物、薄膜
polymer, film, nanoparticles, silicon dioxide, random lasing
統計
Statistics
本論文已被瀏覽 5709 次,被下載 1084
The thesis/dissertation has been browsed 5709 times, has been downloaded 1084 times.
中文摘要
一般傳統雷射產生的機制是透過固定的反射鏡來作為共振腔,而隨機雷射則是藉由散射介質來形成一個類似共振腔結構的封閉散射迴路,使得光可以透過封閉散射迴路而產生雷射光。隨機雷射之優點在於製作簡單、元件尺寸小、製作成本低、可多方向及多頻率輸出等,已成為近年來的主要研究目標,且可應用於雷射成像、醫療檢測、液晶顯示器或照明系統上。
本論文研究摻雜二氧化矽奈米粒子之聚合物薄膜之隨機雷射特性,我們藉由改變外界環境溫度及施加外力於薄膜樣品來探討對雷射輸出頻譜的影響。實驗發現,透過添加二氧化矽奈米粒子在薄膜樣品內能夠有效地產生封閉散射路徑,並能成功地激發共振型隨機雷射,所量測到的臨界脈衝值約為29.91μJ/mm2。另外,我們透過添加不同濃度之二氧化矽奈米粒子在薄膜樣品內,並由實驗量測得知添加濃度為0.2wt%的二氧化矽奈米粒子時會有最好的雷射輸出。接著,我們藉由溫控器調整外在環境溫度,可以發現不同二氧化矽奈米粒子濃度之薄膜樣品的輸出皆可以由共振型隨機雷射變為非共振型隨機雷射,而雷射的輸出強度及輸出波長位置也會隨溫度而有變化。最後,利用施加外力在不同濃度二氧化矽奈米粒子之薄膜樣品,可以得知輸出頻譜同樣會由共振型隨機雷射變為非共振型隨機雷射,且輸出強度會隨薄膜樣品曲率變大而減弱。
Abstract
Compared to traditional lasers which need fixed reflection mirrors to form a cavity, random lasers can be generated by using scattering materials to form cavity-like multiple scattering loop paths. There are several unique advantages of random lasers, such as simple fabrication process, small size, low cost, multiple lasing wavelengths, broad solid angle of lasing output. In recent years, random lasers have been employed in speckle-free imaging, medical diagnostics, liquid crystal display and illumination system.
In this thesis, we demonstrate a random laser from a UV curable gel film consisting of silicon dioxide nanoparticles. The lasing properties of random lasers are discussed by changing the surrounding temperature and pressing the sample. In order to obtain appropriate concentration for the lasing action, we change the concentration of the silicon dioxide nanoparticles in the polymer film. Experimental results show that the 0.2wt% doping concentration of silicon dioxide provides better lasing action, and the lasing threshold is approximately 29.91μJ/mm2.
We then vary the temperature to change the random lasers from the coherent feedback to incoherent feedback with the raising operation temperature. In addition, the emission intensity and the lasing peak are also varied by the operation temperature. Finally, we also observe that the emission can be switched between the coherent feedback and the incoherent feedback by applying the external force, and the intensity and the lasing peak are varied by the curvature of the polymer film.
目次 Table of Contents
誌謝 i
中文摘要 ii
Abstract iii
目錄 iv
表目錄 vi
圖目錄 vii
第一章 緒論 1
1.1 雷射簡介 1
1.2 隨機雷射簡介 4
1.2.1 隨機雷射之理論及應用 5
1.2.2 可調控之隨機雷射 6
1.2.1 薄膜隨機雷射 10
1.3 研究動機 12
第二章 材料特性及樣品製備與量測 13
2.1 實驗材料介紹 13
2.2 樣品製備 16
2.3 隨機雷射量測架設 19
第三章 添加二氧化矽奈米粒子之聚合物薄膜隨機雷射 21
3.1 聚合物薄膜樣品輸出頻譜之量測 21
3.2 聚合物薄膜樣品添加二氧化矽奈米粒子之輸出頻譜量測 24
3.3 不同濃度之二氧化矽奈米粒子對薄膜樣品輸出頻譜的影響 28
第四章 改變外在環境對添加二氧化矽奈米粒子聚合物薄膜之影響 35
4.1 外界溫度對不同濃度的薄膜樣品輸出頻譜之量測 35
4.2 施加外力對不同濃度的薄膜樣品輸出頻譜之影響 44
第五章 結論與未來展望 51
參考文獻 52
參考文獻 References
[1] A. L. Smawlow and C. H. Townes, “Infrared and optical masers,” Phys. Rev., vol. 112, pp. 1940-1949, 1958.
[2] T. H. Maiman, “Stimulated optical radiation in ruby,” Nature, vol. 187, pp. 493-494, 1960.
[3] R. S. Quimby, Photonics and Lasers: An Introduction. John Wiley & Sons, New Jersey, 2006.
[4] C. R. Lee, J. D. Lin, B. Y. Huang, S. H. Lin, T. S. Mo, S. Y. Huang, C. T. Kuo, and H. C. Yeh, “Electrically controllable liquid crystal random lasers below the Fréedericksz transition threshold,” Opt. Express, vol. 19, pp. 2391-2400, 2011.
[5] D. S. Wiersma, “The physics and applications of random lasers,” Nat. Phys., vol. 4, pp. 359-367, 2008.
[6] B. Redding, M. A. Choma, and H. Cao, “Speckle-free laser imaging using random laser illumination,” Nat. Photonics, vol. 6, pp. 355-359, 2012.
[7] R. C. Polson and Z. V. Vardeny, “Random lasing in human tissues,” Appl. Phys. Lett., vol. 85, pp. 1289-1291, 2004.
[8] S. Gottardo, S. Cavalieri, O. Yaroshchuk, and D. S.Wiersma, “Quasi-two-dimensional diffusive random laser action,” Phys. Rev. Lett., vol. 93, p. 263901, 2004.
[9] V. S. Letokhov and S. K. Sekatskii, “Cavityless powder lasers pumped by field-emission cathodes as a new class of monochromatic spatially incoherent radiation sources,” Quant. Electron., vol. 32, pp. 1007-1008, Nov 2002.
[10] D. S. Wiersma, P. Bartolini, A. Lagendijk, and R. Righini, “Localization of light in a disordered medium,” Nature, vol. 390, pp. 671-673, 1997.
[11] H. Cao, J. Y. Xu, Y. Ling, A. L. Burin, E. W. Seeling, X. Liu, and R. P. H. Chang, “Random lasers with coherent feedback,” IEEE J. Sel. Top. Quant. Electron., vol. 9, pp. 111-119, 2003.
[12] S. Mujumdar, “Quantification of lineshape fluctuations in coherent random lasers,” SPIE Newsroom, 2010.
[13] C. R. Lee, S. H. Lin, C. H. Guo, S. H. Chang, T. S. Mo, and S. C. Chu, “All-optically controllable random laser based on a dye-doped polymer-dispersed liquid crystal with nano-sized droplets,” Opt. Express, vol. 18, pp. 2406-2412, 2010.
[14] C. R. Lee, J. D. Lin, B. Y. Huang, T. S. Mo, and S. Y. Huang, “All-optically controllable random laser based on a dye-doped liquid crystal added with a photoisomerizable dye,” Opt. Express, vol. 18, pp. 25896-25905, 2010.
[15] C. W. Chen, H. C. Jau, C. T. Wang, C. H. Lee, I. C. Khoo, and T. H. Lin, “Random lasing in blue phase liquid crystals,” Opt. Express, vol. 20, pp. 23978-23984, 2012.
[16] B. He, Q. Liao, and Y. Huang, “Random lasing in a dye doped cholesteric liquid crystal polymer solution,” Opt. Materials, vol. 31, pp. 375-379, 2008.
[17] G. Strangi, S. Ferjani, V. Barna, A. D. Luca, C. Versace, N. Scaramuzza, and R. Bartolino, “Random lasing and weak localization of light in dye-doped nematic liquid crystals,” Opt. Express, vol. 14, pp. 7737-7744, 2006.
[18] Z. Shen, L. Wu, S. Zhu, Y. Zheng, and X. Chen, “Random lasing action in a polydimethylsiloxane wrinkle induced disordered structure,” Appl. Phys. Lett., vol. 105, p. 021106, 2014.
[19] H. Zhang, G. Feng, J. Yi, J. Mu, K. Yao, and S. Zhou, “Coherent random laser based on liquid waveguide gain channels,” J. Mod. Opt., vol. 62, pp. 865-868, 2015.
[20] S. Sebastian, C. L. Linslal, C. P. G. Vallabhan, V. P. N. Nampoori, P. Radhakrishnan, and M. Kailasnath, “Random lasing with enhanced photostability of silver nanoparticle doped polymer optical fiber laser,” Laser Phys. Lett., vol. 11, p. 055108, 2014.
[21] A. Tulek and Z. V. Vardeny, “Studies of random laser action in π-conjugated polymers,” J. Opt., vol. 12, p. 024008, 2010.
[22] X. Meng, K. Fujita, Y. Zong, S. Murai, and K. Tanaka, “Random lasers with coherent feedback from highly transparent polymer embedded with silver nanoparticles,” Appl. Phys. Lett., vol. 92, p. 201112, 2008.
[23] Q. Song, S. Xiao, Z. Xu, J. Liu, X. Sun, V. Drachev, V. M. Shalaev, O. Akkus, and Y. L. Kim, “Random lasing in bone tissue,” Opt. Lett., vol. 35, pp. 1425-1427, 2010.
[24] H. Zhang, G. Feng, S. Wang, C. Yang, J. Yin, and S. Zhou, “Coherent random lasing from liquid waveguide gain channels with biological scatters,” Appl. Phys. Lett., vol. 105, p. 253705, 2014.
[25] H. Cao, Y. G. Zhao, S. T. Ho, E. W. Seelig, Q. H. Wang, and R. P. H. Chang, “Random laser action in semiconductor powder,” Phys. Pev. Lett., vol. 85, pp. 2278-2281, 1999.
[26] R. K. Thareja and A. Mitra, “Random laser action in ZnO,” Appl. Phys. B, vol. 71, pp. 181-184, 2000.
[27] S. F. Yu, C. Yuen, S. P. Lau, W. I. Park, and G.-C. Yi, “Random laser action in ZnO nanorod arrays embedded in ZnO epilayers,” Appl. Phys. Lett., vol. 84, pp. 3241-3243, 2004.
[28] T. Takahashi, T. Nakamura, and S. Adachi, “Blue-light-emitting ZnSe random laser,” Opt. Lett., vol. 34, pp. 3923-3925, 2009.
[29] H. C. Hsu, C. Y. Wu, and W. F. Hsieh, “Stimulated emission and lasing of random-growth oriented ZnO nanowires,” J. Appl. Phys., vol. 97, p. 064315, 2005.
[30] L. Ye, J. Lu, C. Lv, Y. Feng, C. Zhao, Z. Wang, and Y. Cui, “Random lasing action in magnetic nanoparticles doped dye solutions,” Opt. Commun., vol. 340, pp. 151-154, 2014.
[31] D. R. Jung, J. Kim, S. Nam, C. Nahm, H. Choi, J. I. Kim, J. Lee, C. Kim, and B. Park, “Photoluminescence enhancement in CdS nanoparticles by surface-plasmon resonance,” Appl. Phys. Lett,, vol. 99, p. 041906, 2011.
[32] P. J. W. Hands, D. J. Gardiner, S. M. Morris, C. Mowatt, T. D. Wilkinson, and H. J. Coles, “Band-edge and random lasing in paintable liquid crystal emulsions,” Appl. Phys. Lett., vol. 98, p. 141102, 2011.
[33] D. S. Wiersma and S. Cavalieri, “Light emission:A temperature-tunable random laser,” Nature, vol. 414, pp. 708-709, 2011.
[34] D. S. Wiersma and S. Cavalieri, “Temperature-controlled random laser action in liquid crystal infiltrated systems,” Phys. Rev. E, vol. 66, p. 056612, 2002.
[35] Q. Song, L. Liu, L. Xu, Y. Wu, and Z. Wang, “Electrical tunable random laser emission from a liquid-crystal infiltrated disordered planar microcavity,” Opt. Lett., vol. 34, pp. 298-300, 2009.
[36] L. Ye, B. Liu, C. Zhao, Y. Wang, Y. Cui, and Y. Lu, “The electrically and magnetically controllable random laser from dye-doped liquid crystals,” J. Appl. Phys., vol. 116, p. 053103, 2014.
[37] L. Li and L. Deng, “Low threshold and coherent random lasing from dye-doped cholesteric liquid crystals using oriented cells,” Laser Phys., vol. 23, p. 085001, 2013.
[38] C. J. S. D. Matos, L. D. S. Menezes, A. M. Brito-Silva, M. A. M. Gámez, A. S. L. Gomes, and C. B. D. Araújo, “Random fiber laser,” Phys. Rev. Lett., vol. 99, p. 153903, 2007.
[39] A. E. Vasdekis, G. E. Town, G. A. Turnbull, and I. D. W. Samuel, “Fluidic fibre dye lasers,” Opt. Express, vol. 15, pp. 3962-3967, 2007.
[40] Z. Hu, H. Zheng, L. Wang, X. Tian, T. Wang, Q. Zhang, G. Zou, Y. Chen, and Q. Zhang, “Random fiber laser of POSS solution-filled hollow optical fiber by end pumping,” Opt. Commun., vol. 285, pp. 3967-3970, 2012.
[41] Z. J. Hu, B. Miao, T. X. Wang, Q. Fu, D. G. Zhang, H. Ming, and Q. J. Zhang, “Disordered microstructure polymer optical fiber for stabilized coherent random fiber laser,” Opt. Lett., vol. 38, pp. 4644-4647, 2013.
[42] D. Zhang, Y. Wang, and D. Ma, “SiO2 nanoparticles as scatterers for random organic laser action in red fluorescent dye 4-(dicyanomethylene)-2-tert-butyl-6(1,1,7,7-tetramethyljulolidyl-9-enyl)-4H -pyran doped polystyrene films,” J. Appl. Phys., vol. 103, p. 123107, 2008.
[43] X. Ma, P. Chen, D. Li, Y. Zhang, and D. Yang, “Electrically pumped ZnO film ultraviolet random lasers on silicon substrate,” Appl. Phys. Lett., vol. 91, p. 251109, 2007.
[44] B. T. Chiad, M. A. Hameed, F. J. Kadhim, and K. H. Lati, “Determination of threshold random gain medium in dye: Polymer films containing TiO2 nanoparticles,” Natural Science, vol. 04, pp. 402-408, 2012.
[45] Y. Tian, X. Ma, L. Xiang, M. V. Ryzhkov, A. A. Borodkin, S. I. Rumyantsev, and D. Yang, “Optically and electrically pumped random lasing from ZnO films annealed at different temperatures,” Opt. Commun., vol. 285, pp. 5323-5326, 2012.
[46] W. P. Partridge, N. M. Laurendeau, C. C. Johnson, and R. N. Steppel, “Performance of Pyrromethene 580 and 597 in a commercial Nd:YAG-pumped dye-laser system,” Opt. Lett., vol. 19, pp. 1630-1632, 1994.
[47] E. Yariv and R. Reisfeld, “Laser properties of pyrromethene dyes in sol-gel glasses,” Opt. Materials, vol. 13, pp. 49-54, 1999.
[48] I. Naydenova, Holograms-Recording Materials and Applications. InTech, 2011.
[49] E. Roduner, “Size matters: why nanomaterials are different,” Chem. Soc. Rev., vol. 35, pp. 583-592, 2006.
[50] 賴炤銘 and 李錫隆, “奈米材料的特殊效應與應用,” Chin. Chem. Soc., vol. 61, pp. 585-597, 2003.
[51] X. Meng, K. Fujita, S. Murai, and K. Tanaka, “Coherent random lasers in weakly scattering polymer films containing silver nanoparticles,” Phys. Rev. A, vol. 79, p. 053817, 2009.
[52] X. Zhao, Z. Wu, S. Ning, S. Liang, D. Wang, and X. Hou, “Random lasing from granular surface of waveguide with blends of PS and PMMA,” Opt. Express, vol. 19, pp. 16126-16131, 2011.
[53] L. Yang, G. Feng, J. Yi, K. Yao, G. Deng, and S. Zhou, “Effective random laser action in Rhodamine 6G solution with Al nanoparticles,” Appl. Opt., vol. 50, pp. 1816-1821, 2011.
[54] K. Totsuka, G. V. Soest, T. Ito, A. Lagendijk, and M. Tomita, “Amplification and diffusion of spontaneous emission in strongly scattering medium,” J. Appl. Phys., vol. 87, pp. 7623-7628, 2000.
[55] C. S. Wang, T. Y. Chang, T. Y. Lin, and Y. F. Chen, “Biologically inspired flexible quasi-single-mode random laser: An integration of Pieris canidia butterfly wing and semiconductors,” Sci. Rep., vol. 4, p. 06736, 2014.
[56] L. Mao, P. Lu, Z. Lao, D. Liu, and J. Zhang, “Highly sensitive curvature sensor based on single-mode fiber using core-offset splicing,” Opt. & Laser Tech., vol. 57, pp. 39-43, 2014.
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:自定論文開放時間 user define
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus: 已公開 available


紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code