Responsive image
博碩士論文 etd-0628115-145504 詳細資訊
Title page for etd-0628115-145504
論文名稱
Title
披覆層調變布拉格光柵反射器於絕緣層覆矽上的實現
Cladding-modulated Bragg Grating Reflectors on Silicon-on-insulator Platform
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
102
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2015-07-23
繳交日期
Date of Submission
2015-07-29
關鍵字
Keywords
CMOS製成、光譜反射響應、積體光路元件、波導、布拉格光柵
CMOS-compatible process, Reflection response, Integrated optics devices, Waveguide, Bragg grating
統計
Statistics
本論文已被瀏覽 5658 次,被下載 37
The thesis/dissertation has been browsed 5658 times, has been downloaded 37 times.
中文摘要
集成布拉格光柵結構在SOI(silicon-on-insulator)的發展上,提供靈活與精確的光譜響應是研究的目標之一。為了得到窄的反射帶寬(<1 nm),板狀布拉格光柵波導可以靈活控制光柵耦合係數因其布拉格光柵遠離主要光場。然而,在製程上需要兩個蝕刻步驟,分別設計脊柱與板狀部分。所以板狀布拉格光柵波導不符合CMOS(complementary metal-oxide-semiconductor)製成。與之相反,條形布拉格光柵波導符合CMOS製成,因為布拉格光柵波紋通常會設計在側壁。然而由於光場相比板狀波導有很大部分位於側壁光柵上,使的側壁上的小變化可能會導致在光柵耦合係數相當大的變化,所以很難獲得一個窄帶寬的反射頻譜。
在此我們提出了一個兼容包層調製的波導設計與弱耦合光柵在SOI平台上來實現集成布拉格光柵並兼容CMOS製程,此方式不但可以達到窄帶反射(= 0.217
nm),並且光柵寬度改變對布拉格波長影響不大(Wg = 0.0185),也可藉由調整光柵寬度對反射帶寬進行微調(Wg = 0.0125)。在改變波導光柵寬度從10 nm到40 nm時,包層調製波導的中心波長偏移小於1 nm,遠低於條形波導的17 nm與板形波導的7 nm。在光柵寬度為30nm時,包層調製的光柵被證明提供到達峰值的反射,達到0.6 nm反射帶寬。而波導的傳遞損耗只有-0.1 dB,小於條形波導的傳遞損耗-0.259 dB 與板形波導的傳遞損耗-0.217 dB,且在同一八吋晶圓上,各區域之間的包層調製波導的半高寬與中心波長誤差也低於條形波導與板形波導。包層調製波導上度上不同材料(SiO2與Ta2O5)加熱則可改變有效折射率使中心波長偏移。各種優越的性能難以藉由簡單的條形波導或板形波導來實現。在未來應用上可以用於取樣光柵(Sampled Grating)結構與環形共振腔達到窄而細的柵狀頻譜效果,並且可藉由錯位方式(Offset)的破壞性干涉得到特殊的頻譜,設計成帶通濾波器。
Abstract
The development of integrated Bragg grating structures on silicon-on insulator platform to provide flexible and precise spectral response is one of the research targets. To obtain narrowband reflection response (< 1 nm), slab-type Bragg grating structure is utilized to allow flexible control of the grating coupling coefficient. However, two photolithography steps are required to define the rib and slab widths of the ridge waveguide. Slab-type Bragg grating structure cannot be realized without modifying CMOS process. On the contrary, strip-type Bragg grating could be realized with CMOS compatible process since the grating corrugations are normally on the sidewalls of the strip waveguides .However, due to optical mode size, a small perturbation on the sidewalls of strip waveguides could cause a considerable change in grating coupling coefficient, thus is difficult to obtain a narrowband reflection response.
A CMOS-compatible cladding-modulated grating design with weakly-coupled corrugations on long side waveguides is demonstrated on silicon-on-insulator platform to allow not only narrowband reflection (= 0.217 nm) but also insensitive Bragg wavelength to the grating width change (Wg = 0.0185). Fine tuning of the reflection bandwidth is also possible by simply adjusting the grating width (Wg = 0.0125). With a 30-nm grating width, as-fabricated cladding-modulated grating is demonstrated to provide close-to-unity peak reflectivity, 0.6 nm reflection bandwidth. The additional propagation loss arise from the introduction of sidewall corrugations is characterized to be only 0.1 dB. Such a superior performance is difficult to be reproduced by simply using strip- or slab-type grating counterpart.
目次 Table of Contents
第一章 序論
1-1 前言
1-2 研究動機
1-3 文獻回顧
1-4 論文架構
第二章 矽光學布拉格光柵
2-1矽光學布拉格光柵簡介
2-2 條形波導(Strip waveguide)布拉格光柵
2-3 板形波導(Slab waveguide)布拉格光柵
2-4 包層調製波導(Cladding modulated waveguide)布拉格光柵
2-5 改變波導寬度與光柵寬度對不同波導的有效折射率與限制因子的影響
第三章布拉格光柵量測結果
3-1 下線布局(Layout)
3-2 量測系統
3-3 光柵耦合器耦合效率與波導損耗
3-4 條形波導量測結果
3-5 板形波導量測結果
3-6 包層調製波導量測結果
第四章布拉格光柵量測比較
4-1 不同波導量測比較
4-2 不同晶片量測比較
4-3 加熱量測比較
第五章 結論與未來研究
5-1 結論
5-2 未來研究
參考文獻
參考文獻 References
[1] W. Bogaerts, R. Baets, P. Dumon, V. Wiaux, S. Beckx, D. Taillaert, B. Luyssaert, J. V. Campenhout, P. Bienstman, and D. V. Thourhout, “Nanophotonic waveguides in silicon-on-insulator fabricated with CMOS technology,” J. Lightw. Technol., vol. 23, no. 1, pp. 401–412, 2005.
[2] L. Vivien, and L. Pavesi , “ Handbook of Silicon Photonics, ” CRC Press ,2013.
[3] http://photonicswiki.org/index.php?title=File:Photon_uses.JPG
[4] http://discover.osa.org/optical-society-blog/bid/276528/Photonics-Integration-and-its-future-at-Advanced-Photonics-2013
[5] R. Kashyap, “Fiber Bragg Gratings,” Academic Press, 1999.
[6] W. Shi, H. Yun, C. Lin, J. Flueckiger, N. Jaeger, and L. Chrostowski, “Coupler-apodized Bragg-grating add-drop filter,” Opt. Lett., vol. 38, pp. 3068-3070, 2013.
[7] S. S. Djordjevic, K. Hsang, B. Guan, S. T. S. Cheung, L. Liao, J. Basak, H. F. Liu, and S. J. B. Yoo, “CMOS-compatible, athermal silicon ring modulators clad with titanium dioxide,” Opt. Express, vol. 21, pp. 13958-13968, 2013.
[8] D. T. H. Tan, K. Ikeda, and Y. Fainman, “Cladding-modulated Bragg gratings in silicon waveguides,” Opt. Lett., vol. 34, pp. 1357-1359, 2009.
[9] J. S. Orcutt, S. D. Tang, S. Kramer, K. Mehta, H. Li, V. Stojanovic, and R. J. Ram, “Low-loss polysilicon waveguides fabricated in an emulated high-volume electronics process,” Opt. Express, vol. 20, pp. 7243-7254, 2012.
[10] C. Li, H. J. Zhang, M. B. Yu, and G. Q. Lo, “CMOS-compatible high efficiency double-etched apodized waveguide grating coupler,” Opt. Express, vol. 21, pp. 7868-7874, 2013.
[11] L. Chrostowski, and K. Iniewski, “ High-Speed Photonics Interconnects,” CRC Press ,2013.
[12] A. D. Simard,N. Belhadj,Y. Painchaud, and S. LaRochelle, “Apodized Silicon-on-Insulator Bragg Gratings,” Photo. Tech. Lett., IEEE, vol. 24, pp. 1033-1035, 2012.
[13] X. Wang, Y. Wang, J. Flueckiger, R. Bojko, A. Liu, A. Reid, J. Pond,N. A. F. Jaeger, and L. Chrostowski, “Precise control of the coupling coefficient through destructive interference in silicon waveguide Bragg gratings,” Opt. Lett., vol. 39, pp. 5519-5522, 2014.
[14] W. Xu, S. Wei, R. Vafaei, N. A. F. Jaeger, and L. Chrostowski, “Uniform and Sampled Bragg Gratings in SOI Strip Waveguides With Sidewall Corrugations,” Photo. Tech. Lett., IEEE, vol. 23, pp. 290-292, 2011.
[15] X. Wang, “Silicon Photonic Waveguide Bragg Gratings,” The University Of British Columbia",2013.
[16] X. Wang, W. Shi, H. Yun, S. Grist, N. A. F. Jaeger, and L. Chrostowski, “Narrow-band waveguide Bragg gratings on SOI wafers with CMOS-compatible fabrication process,” Opt. Express, vol. 20, pp. 15547-15558, 2012.
[17] S. P. Chan, C. E. Png, S. T. Lim, G. T. Reed, and V. M. N. Passaro, “Single-Mode and Polarization-Independent Silicon-on-Insulator Waveguides With Small Cross Section,” J. Lightwave Technol., vol. 23, p. 2103, 2005.
[18] S. Honda, Z. Wu, J. Matsui, K. Utaka, T. Edura, M. Tokuda, K. Tsutsui, and Y. Wada, “Largely-tunable wideband Bragg gratings fabricated on SOI rib waveguides employed by deep-RIE” Electron. Lett., vol. 43, pp. 630-631, 2007.

[19] T. E. Murphy, J. Todd Hastings, and H. I. Smith, “Fabrication and characterization of narrow-band Bragg-reflection filters in silicon-on-insulator ridge waveguides,“ J. Lightwave Technol., vol. 19, pp. 1938-1942, 2001.
[20] P. Dong, W. Qian, S. Liao, H. Liang, C. C. Kung, N. N. Feng, R. Shafiiha, J. Fong, D. Feng, A. V. Krishnamoorthy, and M. Asghari, “Low loss shallow-ridge silicon waveguides,” Opt. Express, vol. 18, pp. 14474-14479, 2010.
[21] J. Guomin, C. Ruiyi, Z. Qiang, Y. Jianyi, W. Minghua, and J. Xiaoqing, “Slab-Modulated Sidewall Bragg Gratings in Silicon-on-Insulator Ridge Waveguides,” IEEE Photo. Tech. Lett., vol. 23, pp. 6-8, 2011.
[22] M. Verbis, D. Van Thourhout, and W. Bogaerts, “Weak gratings in silicon-on-insulator for spectral filters based on volume holography,” Opt. Lett., vol. 38, pp. 386-388, 2013.
[23] S. Zamek, D. T. H. Tan, M. Khajavikhan, M. Ayache, M. P. Nezhad, and Y. Fainman, “Compact chip-scale filter based on curved waveguide Bragg gratings,” Opt. Lett., vol. 35, pp. 3477-3479, 2010.
[24] W. Xu, S. Wei, R. Vafaei, N. A. F. Jaeger, and L. Chrostowski, “Silicon-on-insulator Bragg gratings fabricated by deep UV lithography,” Communications and Photonics Conference and Exhibition (ACP), 2010.
[25] Y. Wang, X. Wang, J. Flueckiger, H. Yun, W. Shi, R. Bojko, N. A. F. Jaeger, and L. Chrostowski, “Focusing sub-wavelength grating couplers with low back reflections for rapid prototyping of silicon photonic circuits,” Opt. Express, vol. 22, pp. 20652-20662, 2014.
[26] X. Wang, S. Grist, J. Flueckiger, N. A. F. Jaeger, and L. Chrostowski, “Silicon photonic slot waveguide Bragg gratings and resonators,” Opt. Express, vol. 21, pp. 19029-19039, 2013.
[27] A. H. Atabaki, M. Soltani, S. Yegnanarayanan, A. A. Eftekhar, and A. Adibi, “Optimization of metallic microheaters for high-speed reconfigurable silicon photonics,” Opt. Express, vol. 18, pp. 18312-18323, 2010.
[28] B. Guha, K. Preston, and M. Lipson, “CMOS-compatible temperature insensitive silicon microring modulator,” Lasers and Electro-Optics (CLEO), pp. 1-2, 2011.
[29] Y. Fainman, M. P. Nezhad, D. T. H. Tan, K. Ikeda, O. Bondarenko, and A. Grieco, “Silicon nanophotonic devices for chip-scale optical communication applications” Appl. Opt., vol. 52, pp. 613-624, 2013.
[30] Y. M. Kang, A. Arbabi, and L. L. Goddard, “A microring resonator with an integrated Bragg grating: a compact replacement for a sampled grating distributed Bragg reflector,” Opt. and Quant. Electron, vol. 41, pp. 689, 2009.
[31] Y. M. Kang, A. Arbabi, and L. L. Goddard, “Engineering the spectral reflectance of microring resonators with integrated reflective elements,” Opt. Express, vol. 18, pp. 16813-16825, 2010.
[32] D. T. H. Tan, K. Ikeda, S. Zamek, A. Mizrahi, M. P. Nezhad, A. V. Krishnamoorthy, K. Raj, J. E. Cunningham, X. Zheng, I. Shubin, Y. Luo, and Y. Fainman, “Wide bandwidth, low loss 1 by 4 wavelength division multiplexer on silicon for optical interconnects,” Opt. Express, vol. 19, pp. 2401-2409, 2011.
[33] W. Shi, X. Wang, W. Zhang, L. Chrostowski, and N. A. F. Jaeger, “Contradirectional couplers in silicon-on-insulator rib waveguides,” Opt. Lett., vol. 36, pp. 3999-4001, 2011.
[34] H.-C. Kim., K. Ikeda, and Y. Fainman, “Resonant waveguide device with vertical gratings,” Opt. Lett., vol. 32, pp. 539-541, 2007.
[35] H. A. Macleod, “Thin-Film Optical Filters,” IOP Bookmaker Macros,2001.
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:自定論文開放時間 user define
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus: 已公開 available


紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code