Responsive image
博碩士論文 etd-0628115-170437 詳細資訊
Title page for etd-0628115-170437
論文名稱
Title
探討多巴胺於氧化基材上的堆疊與應用
Characterization and application of dopamine stacking on oxide substrates
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
87
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2015-06-26
繳交日期
Date of Submission
2015-07-28
關鍵字
Keywords
自組裝多層膜、多巴胺、表面改質、生物材料、膜
Dopamine, Biological Materials, Surface Modification, Membrane, Self-assembled layers
統計
Statistics
本論文已被瀏覽 5860 次,被下載 0
The thesis/dissertation has been browsed 5860 times, has been downloaded 0 times.
中文摘要
基材的表面修飾在現今的科學中有許多應用,其中包括電子、生物醫學與膜等方面。在最近的研究,由多巴胺自氧化所生成的膜中,發現其能夠吸附在任何表面上,容易使基材表面改性。然而,對於聚多巴胺薄膜的化學特性、沉積動力學以及機制仍然是未解決的問題。在本研究中,藉由調控溶液酸鹼值以及反應時間從1小時到72小時,我們描述沉積在玻璃表面上的聚多巴胺薄膜之特性。利用X光光電子光譜儀 ( XPS ) 以及紫外/可見光光譜儀 ( UV-Vis ) 的數據來表明在任何時間的聚多巴胺膜中的中間物種。由XPS的結果中,我們可以知道在任何沉積時間聚多巴胺膜的化學狀態的訊息,藉以用來建構聚多巴胺模型。由UV數據中,聚多巴胺膜隨著反應時間增加而增厚;以及溶液酸鹼值愈鹼沉積的聚多巴胺薄膜也愈厚。聚多巴胺也可以應用在還原金屬離子,利用此一特性我們簡單還原金奈米粒子,利用X光繞射分析儀 ( XRD ) 、掃描式電子顯微鏡 ( SEM ) 以及紫外/可見光光譜儀 ( UV-Vis ) 來分析還原生成的金奈米粒子。由XRD的數據進一步證實金奈米粒子的生成。由SEM可以知道金奈米粒子沉積在表面的形貌。SEM與UV-Vis的分析中,可以知道金奈米粒子大小為75.3 ± 5.3奈米。
Abstract
Material surface engineering has attracted great interest in many applications, including electronics, biomedicine, biological materials and membranes. Current interest in films derived from the autoxidation of dopamine stems from their use as adhesion layer to direct facile surface medication. However, unsolved questions remain about the chemical identity of the polydopamine, their deposition kinetics and their mechanism. Here, we report properties of polydopamine films deposited on glass surfaces from solution at different pH and at time ranging from 1 to 72 hours. Data from X-ray photoelectron spectroscopy ( XPS ) and Ultraviolet-Visible Spectrometer ( UV-Vis ) suggest the presence of intermediate species in the polydopamine films at all deposition times. The XPS data provided chemical state information of the polydopamine films as a function of deposition time to propose the mechanism. The Ultraviolet-Visible Spectrometer ( UV-Vis ) analysis showed that the polydopamine film become thicker with the deposition time prolongation and the basic solution. The reducing ability of polydopamine toward metal ion, we attempted to use a polydopamine to reduce Au nanoparticles. We use X-ray Diffraction ( XRD )、Scanning Electron Microscope ( SEM )and Ultraviolet-Visible Spectrometer ( UV-Vis ) to analyze the Au nanoparticles. The XRD data further confirmed the formation of Au nanoparticles. The deposition of Au nanoparticles on the surfaces was checked by SEM. The UV-Vis and SEM analysis showed that the Au nanoparticles sizes was 75.3 ± 5.3 nm.
目次 Table of Contents
摘要 ii
Abstract iii
目錄 iv
圖次 viii
表次 xii
第一章 緒論 1
1-1 表面工程 1
1-1-1 簡介 1
1-1-2 分類 1
1-1-3 自組裝單層膜 ( Self-assembled monolayer, SAM ) 3
1-2 多巴胺的介紹 4
1-2-1 簡介 4
1-2-2 發展與製備 5
1-2-3機制 6
1-3 研究動機 12
第二章儀器原理 15
2-1 X光光電子光譜 ( X-ray photoelectron spectrometry, XPS) 15
2-1-1原理 15
2-1-2使用儀器與設定參數 17
2-2紫外/可見光光譜儀 ( Ultraviolet-Visible Spectrometer, UV-Vis) 17
2-2-1 紫外/可見光光譜 ( Ultraviolet-Visible Spectrometry, UV-Vis ) 17
2-2-2比爾定律 ( Beer’s Law ) 19
2-2-3 使用儀器與設定參數 20
2-3 X光繞射分析儀 ( X-ray Diffraction, XRD) 20
2-3-1 X光繞射分析 20
2-3-2原理 21
2-3-3 使用儀器與設定參數 22
2-4場發射掃描式電子顯微鏡 ( Scanning Electron Microscope, SEM) 22
2-4-1場發射掃瞄式電子顯微鏡 22
2-4-2原理 22
2-4-3 使用儀器與設定參數 24
2-5 電化學分析 ( Electrochemical analyzer ) 24
2-5-1 原理 24
2-5-2 循環伏安法 ( Cyclic Voltammetry, CV ) 25
2-5-3 使用儀器與設定參數 26
第三章緩衝溶液之酸鹼值與浸泡時間對多巴胺沉積在透明基材上之影響 27
3-1前言 27
3-2實驗部分 27
3-2-1 實驗藥品 27
3-2-2 實驗基板 28
3-2-3 實驗流程 28
3-2-3-1 基板清洗 28
3-2-3-2 緩衝溶液配置 28
3-2-3-3 樣品製備 29
3-2-3-4 鹽濃度影響多巴胺沉積之樣品製備 29
3-3結果與討論 30
3-3-1 聚多巴胺沉積在氧化矽基材上 30
3-3-2紫外光/可見光光譜儀量測聚多巴胺薄膜之光學特性 33
3-3-3X光光電子光譜儀鑑定薄膜組成 38
3-3-4多巴胺氧化過程 44
3-3-5鹽影響聚多巴胺的沉積 47
3-4 結論 52
第四章聚多巴胺還原金奈米粒子使其應用在感測葡萄糖 53
4-1 前言 53
4-2實驗部分 56
4-2-1 實驗藥品 56
4-2-2實驗基板與電極 57
4-2-3 實驗流程 57
4-2-3-1 基板清洗 57
4-2-3-2緩衝溶液配置 57
4-2-3-3樣品製備 58
4-3結果與討論 59
4-3-1 金奈米粒子結構鑑定 59
4-3-2碳電極上修飾金奈米粒子使其能夠偵測葡萄糖 63
4-4結論 66
第五章結論 67
參考文獻 68
參考文獻 References
1. Gupta, A. K.; Gupta, M., Biomaterials 2005, 26 (18), 3995-4021.
2. Gupta, A. K.; Naregalkar, R. R.; Vaidya, V. D.; Gupta, M., 2007.
3. Conrad, J. R.; Radtke, J.; Dodd, R.; Worzala, F. J.; Tran, N. C., J. Appl. Phys. 1987, 62 (11), 4591-4596.
4. Lu, K.; Lu, J., Mater. Sci. Eng.: A 2004, 375, 38-45.
5. Falconnet, D.; Csucs, G.; Grandin, H. M.; Textor, M., Biomaterials 2006, 27 (16), 3044-3063.
6. Ma, Z.; Kotaki, M.; Yong, T.; He, W.; Ramakrishna, S., Biomaterials 2005, 26 (15), 2527-2536.
7. Yerokhin, A.; Nie, X.; Leyland, A.; Matthews, A.; Dowey, S., Surf. Coat. Technol. 1999, 122 (2), 73-93.
8. Kim, F.; Kwan, S.; Akana, J.; Yang, P., J. Am. Chem. Soc. 2001, 123 (18), 4360-4361.
9. Li, X.; Zhang, G.; Bai, X.; Sun, X.; Wang, X.; Wang, E.; Dai, H., Nature nanotechnology 2008, 3 (9), 538-542.
10. Petty, M. C., Langmuir-Blodgett films: an introduction. Cambridge University Press: 1996.
11. Ariga, K.; Hill, J. P.; Ji, Q., PCCP 2007, 9 (19), 2319-2340.
12. Kotov, N. A.; Dekany, I.; Fendler, J. H., J. Phys. Chem. 1995, 99 (35), 13065-13069.
13. Kovtyukhova, N. I.; Ollivier, P. J.; Martin, B. R.; Mallouk, T. E.; Chizhik, S. A.; Buzaneva, E. V.; Gorchinskiy, A. D., Chem. Mater. 1999, 11 (3), 771-778.
14. Lvov, Y.; Ariga, K.; Ichinose, I.; Kunitake, T., J. Am. Chem. Soc. 1995, 117 (22), 6117-6123.
15. Tang, Z.; Wang, Y.; Podsiadlo, P.; Kotov, N. A., ADVANCED MATERIALS-DEERFIELD BEACH THEN WEINHEIM- 2006, 18 (24), 3203.
16. Barness, Y.; Gershevitz, O.; Sekar, M.; Sukenik, C. N., Langmuir 2000, 16 (1), 247-251.
17. Bain, C. D.; Whitesides, G. M., Science 1988, 240 (4848), 62-63.
18. Ulman, A., Chem. Rev. 1996, 96 (4), 1533-1554.
19. Ulman, A., An Introduction to Ultrathin Organic Films: From Langmuir--Blodgett to Self--Assembly. Academic press: 2013.
20. Decher, G., Science 1997, 277 (5330), 1232-1237.
21. Aswal, D.; Lenfant, S.; Guerin, D.; Yakhmi, J.; Vuillaume, D., Anal. Chim. Acta 2006, 568 (1), 84-108.
22. Love, J. C.; Estroff, L. A.; Kriebel, J. K.; Nuzzo, R. G.; Whitesides, G. M., Chem. Rev. 2005, 105 (4), 1103-1170.
23. Nuzzo, R. G.; Allara, D. L., J. Am. Chem. Soc. 1983, 105 (13), 4481-4483.
24. Dalsin, J. L.; Hu, B.-H.; Lee, B. P.; Messersmith, P. B., J. Am. Chem. Soc. 2003, 125 (14), 4253-4258.
25. Lee, H.; Dellatore, S. M.; Miller, W. M.; Messersmith, P. B., Science 2007, 318 (5849), 426-430.
26. Jiang, J.; Zhu, L.; Zhu, L.; Zhu, B.; Xu, Y., Langmuir 2011, 27 (23), 14180-14187.
27. Simon, J. D.; Peles, D. N., Acc. Chem. Res. 2010, 43 (11), 1452-1460.
28. Liebscher, J. r.; Mrówczyński, R.; Scheidt, H. A.; Filip, C.; Hădade, N. D.; Turcu, R.; Bende, A.; Beck, S., Langmuir 2013, 29 (33), 10539-10548.
29. Mrówczyński, R.; Turcu, R.; Leostean, C.; Scheidt, H. A.; Liebscher, J., Mater. Chem. Phys. 2013, 138 (1), 295-302.
30. Black, K. C.; Liu, Z.; Messersmith, P. B., Chem. Mater. 2011, 23 (5), 1130-1135.
31. Yang, H.; Lan, Y.; Zhu, W.; Li, W.; Xu, D.; Cui, J.; Shen, D.; Li, G., J. Mater. Chem. 2012, 22 (33), 16994-17001.
32. Liu, Y.; Ai, K.; Lu, L., Chem. Rev. 2014, 114 (9), 5057-5115.
33. Ouyang, R.; Lei, J.; Ju, H.; Xue, Y., Adv. Funct. Mater. 2007, 17 (16), 3223-3230.
34. Crestini, C.; Argyropoulos, D. S., Biorg. Med. Chem. 1998, 6 (11), 2161-2169.
35. Ramos, J.; Rojas, T.; Navarro, F.; Dávalos, F.; Sanjuán, R.; Rutiaga, J.; Young, R. A., J. Agric. Food. Chem. 2004, 52 (16), 5057-5062.
36. Abadulla, E.; Tzanov, T.; Costa, S.; Robra, K.-H.; Cavaco-Paulo, A.; Gübitz, G. M., Appl. Environ. Microbiol. 2000, 66 (8), 3357-3362.
37. D’Annibale, A.; Stazi, S. R.; Vinciguerra, V.; Di Mattia, E.; Sermanni, G. G., Process Biochem. 1999, 34 (6), 697-706.
38. Hosny, M.; Rosazza, J. P., J. Agric. Food. Chem. 2002, 50 (20), 5539-5545.
39. Lante, A.; Crapisi, A.; Krastanov, A.; Spettoli, P., Process Biochem. 2000, 36 (1), 51-58.
40. Vianello, F.; Cambria, A.; Ragusa, S.; Cambria, M. T.; Zennaro, L.; Rigo, A., Biosens. Bioelectron. 2004, 20 (2), 315-321.
41. Vianello, F.; Ragusa, S.; Cambria, M. T.; Rigo, A., Biosens. Bioelectron. 2006, 21 (11), 2155-2160.
42. Gomes, S.; Nogueira, J.; Rebelo, M., Biosens. Bioelectron. 2004, 20 (6), 1211-1216.
43. Rahman, M. A.; Noh, H.-B., Anal. Chem. 2008, 80 (21), 8020-8027.
44. Zhang, Y.; Zeng, G.-M.; Tang, L.; Huang, D.-L.; Jiang, X.-Y.; Chen, Y.-N., Biosens. Bioelectron. 2007, 22 (9), 2121-2126.
45. Tan, Y.; Deng, W.; Li, Y.; Huang, Z.; Meng, Y.; Xie, Q.; Ma, M.; Yao, S., J. Phys. Chem. B 2010, 114 (15), 5016-5024.
46. Bernsmann, F.; Ball, V.; Addiego, F.; Ponche, A.; Michel, M.; Gracio, J. J. d. A.; Toniazzo, V.; Ruch, D., Langmuir 2011, 27 (6), 2819-2825.
47. Yu, F.; Chen, S.; Chen, Y.; Li, H.; Yang, L.; Chen, Y.; Yin, Y., J. Mol. Struct. 2010, 982 (1), 152-161.
48. Dreyer, D. R.; Miller, D. J.; Freeman, B. D.; Paul, D. R.; Bielawski, C. W., Langmuir 2012, 28 (15), 6428-6435.
49. Hong, S.; Na, Y. S.; Choi, S.; Song, I. T.; Kim, W. Y.; Lee, H., Adv. Funct. Mater. 2012, 22 (22), 4711-4717.
50. Della Vecchia, N. F.; Avolio, R.; Alfè, M.; Errico, M. E.; Napolitano, A.; d'Ischia, M., Adv. Funct. Mater. 2013, 23 (10), 1331-1340.
51. Wei, Q.; Zhang, F.; Li, J.; Li, B.; Zhao, C., Polym. Chem. 2010, 1 (9), 1430-1433.
52. Ou, J.; Wang, J.; Liu, S.; Zhou, J.; Ren, S.; Yang, S., Appl. Surf. Sci. 2009, 256 (3), 894-899.
53. Ahn, J.-H.; Kim, H.-S.; Lee, K. J.; Jeon, S.; Kang, S. J.; Sun, Y.; Nuzzo, R. G.; Rogers, J. A., Science 2006, 314 (5806), 1754-1757.
54. Alivisatos, P., Nat. Biotechnol. 2004, 22 (1), 47-52.
55. Langer, R., Science 2001, 293 (5527), 58-59.
56. Croll, T. I.; O'Connor, A. J.; Stevens, G. W.; Cooper-White, J. J., Biomacromolecules 2004, 5 (2), 463-473.
57. Whaley, S. R.; English, D.; Hu, E. L.; Barbara, P. F.; Belcher, A. M., Nature 2000, 405 (6787), 665-668.
58. Tamerler, C.; Sarikaya, M., Acta Biomater. 2007, 3 (3), 289-299.
59. Swartz Jr, W. E., Anal. Chem. 1973, 45 (9), 788A-800a.
60. Paterson, E.; Swaffield, R., X-ray photoelectron spectroscopy. In Clay Mineralogy: Spectroscopic and Chemical Determinative Methods, Springer: 1994; pp 226-259.
61. Crist, B. V., XPS Reports 2007, 1 (1).
62. Schneider, L. M., 2014.
63. Pomeranz, Y.; Meloan, C. E., Visible and ultraviolet spectroscopy. In Food Analysis, Springer: 1994; pp 68-86.
64. Skoog, D. A.; West, D. M., Principles of instrumental analysis. Saunders College Philadelphia: 1980; Vol. 158.
65. Ålander, G.; Åkesson, P., 2011.
66. Goldstein, J.; Newbury, D. E.; Echlin, P.; Joy, D. C.; Romig Jr, A. D.; Lyman, C. E.; Fiori, C.; Lifshin, E., Scanning electron microscopy and X-ray microanalysis: a text for biologists, materials scientists, and geologists. Springer Science & Business Media: 2012.
67. 胡啟章, 電化學原理與方法. 五南圖書出版股份有限公司: 2002.
68. Gosser, D. K., Cyclic voltammetry: simulation and analysis of reaction mechanisms. VCH New York: 1993.
69. Lin, J.; Brown, C. W., Environ. Sci. Technol. 1993, 27 (8), 1611-1615.
70. Bernsmann, F.; Ponche, A.; Ringwald, C.; Hemmerlé, J.; Raya, J.; Bechinger, B.; Voegel, J.-C.; Schaaf, P.; Ball, V., J. Phys. Chem. C 2009, 113 (19), 8234-8242.
71. Clark Jr, M. B.; Gardella Jr, J. A.; Schultz, T. M.; Patil, D. G.; Salvati Jr, L., Anal. Chem. 1990, 62 (9), 949-956.
72. Artyushkova, K.; Kiefer, B.; Halevi, B.; Knop-Gericke, A.; Schlogl, R.; Atanassov, P., Chem. Commun. 2013, 49 (25), 2539-2541.
73. Pop-Georgievski, O.; Neykova, N.; Proks, V.; Houdkova, J.; Ukraintsev, E.; Zemek, J.; Kromka, A.; Rypaček, F., Thin Solid Films 2013, 543, 180-186.
74. Zangmeister, R. A.; Morris, T. A.; Tarlov, M. J., Langmuir 2013, 29 (27), 8619-8628.
75. Kim, H. W.; McCloskey, B. D.; Choi, T. H.; Lee, C.; Kim, M.-J.; Freeman, B. D.; Park, H. B., ACS Appl. Mater. Interfaces 2013, 5 (2), 233-238.
76. McCloskey, B. D.; Park, H. B.; Ju, H.; Rowe, B. W.; Miller, D. J.; Chun, B. J.; Kin, K.; Freeman, B. D., Polymer 2010, 51 (15), 3472-3485.
77. Yu, M.; Hwang, J.; Deming, T. J., J. Am. Chem. Soc. 1999, 121 (24), 5825-5826.
78. d'Ischia, M.; Napolitano, A.; Pezzella, A.; Meredith, P.; Sarna, T., Angew. Chem. Int. Ed. 2009, 48 (22), 3914-3921.
79. Bothma, J. P.; de Boor, J.; Divakar, U.; Schwenn, P. E.; Meredith, P., Adv. Mater. 2008, 20 (18), 3539-3542.
80. Jenkins, H., Chemical Thermodynamics at a Glance 2008, 160-163.
81. Monnard, P.-A.; Apel, C. L.; Kanavarioti, A.; Deamer, D. W., Astrobiology 2002, 2 (2), 139-152.
82. Xu, H.; Liu, X.; Su, G.; Zhang, B.; Wang, D., Langmuir 2012, 28 (36), 13060-13065.
83. Hong, S.; Lee, J. S.; Ryu, J.; Lee, S. H.; Lee, D. Y.; Kim, D.-P.; Park, C. B.; Lee, H., Nanotechnology 2011, 22 (49), 494020.
84. Long, Y.; Wu, J.; Wang, H.; Zhang, X.; Zhao, N.; Xu, J., J. Mater. Chem. 2011, 21 (13), 4875-4881.
85. Sureshkumar, M.; Lee, P.-N.; Lee, C.-K., J. Mater. Chem. 2011, 21 (33), 12316-12320.
86. Guo, L.; Liu, Q.; Li, G.; Shi, J.; Liu, J.; Wang, T.; Jiang, G., Nanoscale 2012, 4 (19), 5864-5867.
87. Liu, R.; Guo, Y.; Odusote, G.; Qu, F.; Priestley, R. D., ACS Appl. Mater. Interfaces 2013, 5 (18), 9167-9171.
88. Xie, Y.; Yan, B.; Xu, H.; Chen, J.; Liu, Q.; Deng, Y.; Zeng, H., ACS Appl. Mater. Interfaces 2014, 6 (11), 8845-8852.
89. Nurunnabi, M.; Khatun, Z.; Nafiujjaman, M.; Lee, D.-g.; Lee, Y.-k., ACS Appl. Mater. Interfaces 2013, 5 (16), 8246-8253.
90. Luo, J.; Jiang, S.; Liu, X., J. Phys. Chem. C 2013, 117 (36), 18448-18456.
91. Zhang, Q.-L.; Xu, T.-Q.; Wei, J.; Chen, J.-R.; Wang, A.-J.; Feng, J.-J., Electrochim. Acta 2013, 112, 127-132.
92. Cong, Y.; Xia, T.; Zou, M.; Li, Z.; Peng, B.; Guo, D.; Deng, Z., J. Mater. Chem. B 2014, 2 (22), 3450-3461.
93. Saunders, A. E.; Sigman, M. B.; Korgel, B. A., J. Phys. Chem. B 2004, 108 (1), 193-199.
94. Zhang, S.; Wang, N.; Yu, H.; Niu, Y.; Sun, C., Bioelectrochemistry 2005, 67 (1), 15-22.
95. Duncan, B.; Kim, C.; Rotello, V. M., J. Controlled Release 2010, 148 (1), 122-127.
96. Peng, G.; Tisch, U.; Adams, O.; Hakim, M.; Shehada, N.; Broza, Y. Y.; Billan, S.; Abdah-Bortnyak, R.; Kuten, A.; Haick, H., Nature nanotechnology 2009, 4 (10), 669-673.
97. Thompson, D. T., Nano Today 2007, 2 (4), 40-43.
98. Eustis, S.; El-Sayed, M. A., Chem. Soc. Rev. 2006, 35 (3), 209-217.
99. Ghosh, S. K.; Pal, T., Chem. Rev. 2007, 107 (11), 4797-4862.
100. Haiss, W.; Thanh, N. T.; Aveyard, J.; Fernig, D. G., Anal. Chem. 2007, 79 (11), 4215-4221.
101. Uosaki, K.; Shen, Y.; Kondo, T., J. phys. chem. 1995, 99 (38), 14117-14122.
102. Xian, Y.; Hu, Y.; Liu, F.; Xian, Y.; Wang, H.; Jin, L., Biosens. Bioelectron. 2006, 21 (10), 1996-2000.
103. Liu, S.; Ju, H., Biosens. Bioelectron. 2003, 19 (3), 177-183.
104. Yan, W.; Feng, X.; Chen, X.; Hou, W.; Zhu, J.-J., Biosens. Bioelectron. 2008, 23 (7), 925-931.
105. Setti, L.; Fraleoni-Morgera, A.; Ballarin, B.; Filippini, A.; Frascaro, D.; Piana, C., Biosens. Bioelectron. 2005, 20 (10), 2019-2026.
106. Ren, X.; Meng, X.; Tang, F., Sensors Actuators B: Chem. 2005, 110 (2), 358-363.
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:自定論文開放時間 user define
開放時間 Available:
校內 Campus:永不公開 not available
校外 Off-campus:永不公開 not available

您的 IP(校外) 位址是 3.137.161.222
論文開放下載的時間是 校外不公開

Your IP address is 3.137.161.222
This thesis will be available to you on Indicate off-campus access is not available.

紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 永不公開 not available

QR Code