Responsive image
博碩士論文 etd-0628115-180010 詳細資訊
Title page for etd-0628115-180010
論文名稱
Title
華通氏膠間質幹細胞轉移粒線體對於肌陣攣癲癇發作伴破碎紅纖維(MERRF)症細胞的治療效果
The therapeutic effect of mitochondrial transfer from Wharton’s jelly mesenchymal stem cells (WJMSCs) to Myoclonic Epilepsy with Ragged Red Fibers (MERRF) syndrome-associated cells
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
178
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2015-07-23
繳交日期
Date of Submission
2015-07-31
關鍵字
Keywords
華通氏膠間質幹細胞、肌陣攣癲癇發作伴破碎紅纖維(MERRF)症候群、生物能量產出、粒線體功能、粒線體轉移
bioenergetics, mitochondrial function, mitochondrial transfer, Wharton’s jelly mesenchymal stem cells, MERRF syndrome
統計
Statistics
本論文已被瀏覽 5748 次,被下載 27
The thesis/dissertation has been browsed 5748 times, has been downloaded 27 times.
中文摘要
成體間質幹細胞可藉由細胞間轉移粒線體以拯救粒線體功能缺陷的細胞。產後剩餘臍帶中的華通氏膠富含間質幹細胞,是一個方便且可大量取得幹細胞的來源。肌陣攣癲癇發作伴破碎紅纖維(MERRF)症候群是由於母系遺傳突變的粒線體基因而造成的疾病,患病者會表現出動作、聽力、視覺或是心肺功能等障礙。而本研究將欲探討華通氏膠間質幹細胞是否有能力傳遞粒線體病治療MERRF症候群細胞的粒線體生物產能缺失。首先,將粒線體基因喪失的ρ0細胞與華通氏膠間質幹細胞共同培養,發現粒線體及其基因組自華通氏膠間質幹細胞傳遞至ρ0細胞,並恢復其原本缺損的呼吸功能,藉此確定華通氏膠間質幹細胞具有傳遞粒線體並拯救粒線體功能缺失。接著,將MERRF病人粒線體融入ρ0細胞建立出MERRF融合細胞,該細胞展現出粒線體功能缺失。最後,本研究發現,華通氏膠間質幹細胞可傳遞粒線體至MERRF融合細胞,並改善粒線體功能。總結之,華通氏膠間質幹細胞可傳遞功能性粒線體進入MERRF細胞,並改善粒線體功能與生物能量產出。在臨床應用上,本研究結果具有發展新療法的潛力。
Abstract
Adult mesenchymal stem cells (MSCs)-conducted mitochondrial transfer has been recently shown to rescue mitochondrial bioenergetics and prevent cell death caused by mitochondrial dysfunction. Wharton’s jelly-derived MSCs (WJMSCs) harvested from postpartum umbilical cords are an accessible and abundant source of stem cells. Myoclonic Epilepsy with Ragged Red Fibers (MERRF) syndrome is characterized by disorders in motor, hearing, visual and cardiac functions and is associated with maternally-inherited mutation in mitochondrial genome. This study aimed to determine the capability of WJMSCs to transfer healthy mitochondria and rescue impaired mitochondrial bioenergetics caused by MERRF. Firstly, mitochondrial DNA (mtDNA)-depleted ρ0 cells and cybrids harboring MERRF mtDNA were created to be cellular models of mitochondrial defects. Secondly, WJMSCs was shown to be able to transfer mitochondria to ρ0 cells and rescued impaired mitochondrial function, verifying the ability of WJMSCs in conducting intercellular mitochondrial transfer. Finally, mitochondrial transfer from WJSMCs to MERRF cybrid was revealed. MERRF cybrids receiving mitochondrial transfer present improved mitochondrial function and bioenergetics. Collectively, this study suggests that WJMSCs may serve as a potential therapeutic strategy for mitochondrial diseases through the donation of healthy mitochondria to cells with genetic mitochondrial defects.
目次 Table of Contents
誌謝 ii
中文摘要 iii
Abstract iv
List of Figures圖次 viii
List of Tables表次 x
Terminology: abbreviations and symbols xi
Chapter 1: Introduction 1
1.1 Mitochondrial Biology 1
1.1.1 Basic Constitutions and Functions of Mitochondria 1
1.1.2 Mitochondrial Dynamics 2
1.1.3 Intra- and Inter-cellular Mitochondrial Transfer 4
1.2 Mitochondrial Genetics 6
1.2.1 MtDNA Organization 6
1.2.2 MtDNA Replication and Transcription 6
1.2.3 Maternal Inheritance and Transmission of mtDNA 8
1.2.4 Mitochondrial Dynamics and mtDNA maintenance 9
1.2.5 Mitochondrial Diseases 10
1.2.6 Neuromuscular Disease Caused by MtDNA Mutation: Myoclonic Epilepsy and Ragged Red Fibers (MERRF) 11
1.3 Cellular Model of MtDNA Defect 13
1.3.1 mtDNA-depleted ρ0 cells 14
1.3.2 Cybrids harboring mtDNA mutation from patient 14
1.4 Therapeutic Mitochondrial Transfer of MSCs 15
1.5 Wharton’s jelly mesenchymal stem cells (WJMSCs) 17
1.5.1 General Features 17
1.5.2 Surface Markers 18
1.5.3 Immuomodulatory Property 18
1.5.4 Proliferation and Differentiation Features 18
1.5.5 Mitochondrial Transfer of WJMSCs is still unknown 19
1.6 The aims of this study 20
Chapter 2: Materials and Methods 21
2.1 Cell culture and creation of ρ0 cell and cybrid 21
2.2 Isolation, cultivation and identification of WJMSCs 21
2.3 Experimental procedures of co-culture and imaging (Chapter 4) 22
2.4 Experimental procedures of co-culture and imaging (Chapter 5) 23
2.5 MtDNA content assay and identification of mitochondrial genotypes 24
2.6 Flow cytometry assay 25
2.7 Western blot 25
2.8 Oxygen consumption rate (OCR) 25
2.9 ATP and lactate assay 26
2.10 Colony formation assay 26
2.11 Mitochondria-dependent viability test 27
2.12 Cellular motility assay 27
2.13 Mitochondrial morphology 28
2.14 Statistical analysis 28
Chapter 3: The establishment of mtDNA-depleted ρ0 cell and MERRF cybrid 29
3.1 General Introduction 29
3.2 The creation of mtDNA-depleted ρ0 cell 29
3.3 Cybrids harboring mt.8344A>G mutation from MERRF patient 33
3.4 Summary 36
Chapter 4: Mitochondrial Transfer from WJMSCs to ρ0 cells Rescue Mitochondrial Function 38
4.1 General Introduction 38
4.2 WJMSCs transferred mitochondria to rescue ρ0 cells 38
4.2.1 ρ0 cells obtained mitochondria from WJMSCs and acquired proliferative ability in pyruvate/uridine-free medium 38
4.2.2 WJMSCs replenish ρ0 cells with mtDNA to form chimeric ρ+Wcells 43
4.2.3 ρ+W cells which received mtDNA from WJMSCs exhibited respiratory capacity and ETC complex activity 48
4.2.4 Glycolysis-reliant ρ0 cells were adapted to OXPHOS-reliant ρ+W cells by WJMSCs 54
4.2.5 ρ+W cells demonstrated aerobic viability and attachment-free proliferation 56
4.2.6 Cellular motility blunted by inactive OXPHOS was rescued following WJMSC-mediated mitochondrial transfer 57
4.2.7 The improvement in mitochondrial function by the WJMSC-derived mitochondrial transfer could be stably sustained 60
4.3 Summary 62
Chapter 5: Mitochondrial Transfer from WJMSCs to MERRF cybrid cells Rescues Mitochondrial Function 64
5.1 General Introduction 64
5.2 WJMSCs transferred mitochondria to rescue MERRF cybrids 64
5.2.1 Mitochondria and mtDNA from WJMSCs can be transferred to MERRF cybrids 64
5.2.2 MERRF cybrids recaptured normal mitochondrial biogenesis and morphology after recieving WJMSCs-derived mitochondrial transfer 69
5.2.3 Mitochondrial transfer from WJMSCs to MERRF cybrids improved bioenergetics 72
5.2.4 Proliferation and mitochondria-dependent growth of MERRF cybrids were rescued by WJMSCs-derived mitochondrial transfer 75
5.2.5 The rescue effect of mitochondrial transfer can last for upto 60 days 77
5.3 Summary 81
Chapter 6: Discussion 83
6.1 Project background 83
6.2 The creation of ρ0 cells and MERRF cybrids 83
6.3 Mitochondrial transfer from WJMSCs to ρ0 cells 84
6.4 Mitochondrial transfer from WJMSCs to MERRF cybrid 87
6.5 Conclusion 90
References 91
Appendix: Publications Arising from this Work 107
參考文獻 References
Acquistapace A, Bru T, Lesault PF, Figeac F, Coudert AE, le Coz O et al (2011). Human mesenchymal stem cells reprogram adult cardiomyocytes toward a progenitor-like state through partial cell fusion and mitochondria transfer. Stem Cells 29: 812-824.

Ahmad T, Mukherjee S, Pattnaik B, Kumar M, Singh S, Rehman R et al (2014). Miro1 regulates intercellular mitochondrial transport & enhances mesenchymal stem cell rescue efficacy. EMBO J 33: 994-1010.

Al Rawi S, Louvet-Vallee S, Djeddi A, Sachse M, Culetto E, Hajjar C et al (2011). Postfertilization autophagy of sperm organelles prevents paternal mitochondrial DNA transmission. Science 334: 1144-1147.

Anderson S, Bankier AT, Barrell BG, de Bruijn MH, Coulson AR, Drouin J et al (1981). Sequence and organization of the human mitochondrial genome. Nature 290: 457-465.

Andrews RM, Kubacka I, Chinnery PF, Lightowlers RN, Turnbull DM, Howell N (1999). Reanalysis and revision of the Cambridge reference sequence for human mitochondrial DNA. Nat Genet 23: 147.

Antonicka H, Floryk D, Klement P, Stratilova L, Hermanska J, Houstkova H et al (1999). Defective kinetics of cytochrome c oxidase and alteration of mitochondrial membrane potential in fibroblasts and cytoplasmic hybrid cells with the mutation for myoclonus epilepsy with ragged-red fibres ('MERRF') at position 8344 nt. Biochem J 342 Pt 3: 537-544.

Bacman SR, Williams SL, Pinto M, Peralta S, Moraes CT (2013). Specific elimination of mutant mitochondrial genomes in patient-derived cells by mitoTALENs. Nat Med 19: 1111-1113.

Baksh D, Yao R, Tuan RS (2007). Comparison of proliferative and multilineage differentiation potential of human mesenchymal stem cells derived from umbilical cord and bone marrow. Stem Cells 25: 1384-1392.

Ball EH, Singer SJ (1982). Mitochondria are associated with microtubules and not with intermediate filaments in cultured fibroblasts. Proc Natl Acad Sci U S A 79: 123-126.

Baudin B, Bruneel A, Bosselut N, Vaubourdolle M (2007). A protocol for isolation and culture of human umbilical vein endothelial cells. Nat Protoc 2: 481-485.

Bogenhagen DF, Rousseau D, Burke S (2008). The layered structure of human mitochondrial DNA nucleoids. J Biol Chem 283: 3665-3675.

Boquest AC, Noer A, Collas P (2006). Epigenetic programming of mesenchymal stem cells from human adipose tissue. Stem Cell Rev 2: 319-329.

Brandon MC, Lott MT, Nguyen KC, Spolim S, Navathe SB, Baldi P et al (2005). MITOMAP: a human mitochondrial genome database--2004 update. Nucleic Acids Res 33: D611-613.

Brickley K, Stephenson FA (2011). Trafficking kinesin protein (TRAK)-mediated transport of mitochondria in axons of hippocampal neurons. J Biol Chem 286: 18079-18092.

Cao L, Shitara H, Sugimoto M, Hayashi J, Abe K, Yonekawa H (2009). New evidence confirms that the mitochondrial bottleneck is generated without reduction of mitochondrial DNA content in early primordial germ cells of mice. PLoS Genet 5: e1000756.

Carelli V, Chan DC (2014). Mitochondrial DNA: impacting central and peripheral nervous systems. Neuron 84: 1126-1142.

Chan DC (2012). Fusion and fission: interlinked processes critical for mitochondrial health. Annu Rev Genet 46: 265-287.

Chang JC, Liu KH, Chuang CS, Su HL, Wei YH, Kuo SJ et al (2013). Treatment of human cells derived from MERRF syndrome by peptide-mediated mitochondrial delivery. Cytotherapy 15: 1580-1596.

Chang KT, Niescier RF, Min KT (2011). Mitochondrial matrix Ca2+ as an intrinsic signal regulating mitochondrial motility in axons. Proc Natl Acad Sci U S A 108: 15456-15461.

Chen H, Detmer SA, Ewald AJ, Griffin EE, Fraser SE, Chan DC (2003). Mitofusins Mfn1 and Mfn2 coordinately regulate mitochondrial fusion and are essential for embryonic development. J Cell Biol 160: 189-200.

Chen H, Chan DC (2005). Emerging functions of mammalian mitochondrial fusion and fission. Hum Mol Genet 14 Spec No. 2: R283-289.

Chen H, Chomyn A, Chan DC (2005). Disruption of fusion results in mitochondrial heterogeneity and dysfunction. J Biol Chem 280: 26185-26192.

Chen H, McCaffery JM, Chan DC (2007). Mitochondrial fusion protects against neurodegeneration in the cerebellum. Cell 130: 548-562.

Chen H, Vermulst M, Wang YE, Chomyn A, Prolla TA, McCaffery JM et al (2010). Mitochondrial fusion is required for mtDNA stability in skeletal muscle and tolerance of mtDNA mutations. Cell 141: 280-289.

Chen MY, Lie PC, Li ZL, Wei X (2009). Endothelial differentiation of Wharton's jelly-derived mesenchymal stem cells in comparison with bone marrow-derived mesenchymal stem cells. Exp Hematol 37: 629-640.

Chinnery P, Majamaa K, Turnbull D, Thorburn D (2006). Treatment for mitochondrial disorders. Cochrane Database Syst Rev: CD004426.

Cho YM, Kim JH, Kim M, Park SJ, Koh SH, Ahn HS et al (2012). Mesenchymal stem cells transfer mitochondria to the cells with virtually no mitochondrial function but not with pathogenic mtDNA mutations. PLoS One 7: e32778.

Chomyn A, Martinuzzi A, Yoneda M, Daga A, Hurko O, Johns D et al (1992). MELAS mutation in mtDNA binding site for transcription termination factor causes defects in protein synthesis and in respiration but no change in levels of upstream and downstream mature transcripts. Proc Natl Acad Sci U S A 89: 4221-4225.

Chomyn A, Lai ST, Shakeley R, Bresolin N, Scarlato G, Attardi G (1994). Platelet-mediated transformation of mtDNA-less human cells: analysis of phenotypic variability among clones from normal individuals--and complementation behavior of the tRNALys mutation causing myoclonic epilepsy and ragged red fibers. Am J Hum Genet 54: 966-974.

Civiletto G, Varanita T, Cerutti R, Gorletta T, Barbaro S, Marchet S et al (2015). Opa1 overexpression ameliorates the phenotype of two mitochondrial disease mouse models. Cell Metab 21: 845-854.

Clayton DA (1991). Replication and transcription of vertebrate mitochondrial DNA. Annu Rev Cell Biol 7: 453-478.

Comte C, Tonin Y, Heckel-Mager AM, Boucheham A, Smirnov A, Aure K et al (2013). Mitochondrial targeting of recombinant RNAs modulates the level of a heteroplasmic mutation in human mitochondrial DNA associated with Kearns Sayre Syndrome. Nucleic Acids Res 41: 418-433.

Conconi MT, Burra P, Di Liddo R, Calore C, Turetta M, Bellini S et al (2006). CD105(+) cells from Wharton's jelly show in vitro and in vivo myogenic differentiative potential. Int J Mol Med 18: 1089-1096.

Cree LM, Samuels DC, de Sousa Lopes SC, Rajasimha HK, Wonnapinij P, Mann JR et al (2008). A reduction of mitochondrial DNA molecules during embryogenesis explains the rapid segregation of genotypes. Nat Genet 40: 249-254.

Crimi M, Bordoni A, Menozzi G, Riva L, Fortunato F, Galbiati S et al (2005). Skeletal muscle gene expression profiling in mitochondrial disorders. FASEB J 19: 866-868.

Cselenyak A, Pankotai E, Horvath EM, Kiss L, Lacza Z (2010). Mesenchymal stem cells rescue cardiomyoblasts from cell death in an in vitro ischemia model via direct cell-to-cell connections. BMC Cell Biol 11: 29.

Dagda RK, Cherra SJ, 3rd, Kulich SM, Tandon A, Park D, Chu CT (2009). Loss of PINK1 function promotes mitophagy through effects on oxidative stress and mitochondrial fission. J Biol Chem 284: 13843-13855.

De la Mata M, Garrido-Maraver J, Cotan D, Cordero MD, Oropesa-Avila M, Izquierdo LG et al (2012). Recovery of MERRF fibroblasts and cybrids pathophysiology by coenzyme Q10. Neurotherapeutics 9: 446-463.

De Miguel MP, Fuentes-Julian S, Blazquez-Martinez A, Pascual CY, Aller MA, Arias J et al (2012). Immunosuppressive properties of mesenchymal stem cells: advances and applications. Current molecular medicine 12: 574-591.

De Vos KJ, Allan VJ, Grierson AJ, Sheetz MP (2005). Mitochondrial function and actin regulate dynamin-related protein 1-dependent mitochondrial fission. Curr Biol 15: 678-683.

Delettre C, Lenaers G, Griffoin JM, Gigarel N, Lorenzo C, Belenguer P et al (2000). Nuclear gene OPA1, encoding a mitochondrial dynamin-related protein, is mutated in dominant optic atrophy. Nat Genet 26: 207-210.

Delettre C, Lenaers G, Pelloquin L, Belenguer P, Hamel CP (2002). OPA1 (Kjer type) dominant optic atrophy: a novel mitochondrial disease. Mol Genet Metab 75: 97-107.

Deuse T, Stubbendorff M, Tang-Quan K, Phillips N, Kay MA, Eiermann T et al (2011). Immunogenicity and immunomodulatory properties of umbilical cord lining mesenchymal stem cells. Cell transplantation 20: 655-667.

Ding DC, Shyu WC, Lin SZ, Liu HW, Chiou SH, Chu TY (2012). Human umbilical cord mesenchymal stem cells support nontumorigenic expansion of human embryonic stem cells. Cell transplantation 21: 1515-1527.

Dominici M, Le Blanc K, Mueller I, Slaper-Cortenbach I, Marini F, Krause D et al (2006). Minimal criteria for defining multipotent mesenchymal stromal cells. The International Society for Cellular Therapy position statement. Cytotherapy 8: 315-317.

Dunbar DR, Moonie PA, Zeviani M, Holt IJ (1996). Complex I deficiency is associated with 3243G:C mitochondrial DNA in osteosarcoma cell cybrids. Hum Mol Genet 5: 123-129.

Duvezin-Caubet S, Jagasia R, Wagener J, Hofmann S, Trifunovic A, Hansson A et al (2006). Proteolytic processing of OPA1 links mitochondrial dysfunction to alterations in mitochondrial morphology. J Biol Chem 281: 37972-37979.

Elliott HR, Samuels DC, Eden JA, Relton CL, Chinnery PF (2008). Pathogenic mitochondrial DNA mutations are common in the general population. Am J Hum Genet 83: 254-260.

English K, French A, Wood KJ (2010). Mesenchymal stromal cells: facilitators of successful transplantation? Cell stem cell 7: 431-442.

Enriquez JA, Chomyn A, Attardi G (1995). MtDNA mutation in MERRF syndrome causes defective aminoacylation of tRNA(Lys) and premature translation termination. Nat Genet 10: 47-55.

Evans MD, Dizdaroglu M, Cooke MS (2004). Oxidative DNA damage and disease: induction, repair and significance. Mutat Res 567: 1-61.

Fan W, Waymire KG, Narula N, Li P, Rocher C, Coskun PE et al (2008). A mouse model of mitochondrial disease reveals germline selection against severe mtDNA mutations. Science 319: 958-962.

Figeac F, Lesault PF, Le Coz O, Damy T, Souktani R, Trebeau C et al (2014). Nanotubular crosstalk with distressed cardiomyocytes stimulates the paracrine repair function of mesenchymal stem cells. Stem Cells 32: 216-230.

Fong CY, Gauthaman K, Cheyyatraivendran S, Lin HD, Biswas A, Bongso A (2012). Human umbilical cord Wharton's jelly stem cells and its conditioned medium support hematopoietic stem cell expansion ex vivo. Journal of cellular biochemistry 113: 658-668.

Fu YS, Cheng YC, Lin MY, Cheng H, Chu PM, Chou SC et al (2006). Conversion of human umbilical cord mesenchymal stem cells in Wharton's jelly to dopaminergic neurons in vitro: potential therapeutic application for Parkinsonism. Stem Cells 24: 115-124.

Fujita Y, Ito M, Nozawa Y, Yoneda M, Oshida Y, Tanaka M (2007). CHOP (C/EBP homologous protein) and ASNS (asparagine synthetase) induction in cybrid cells harboring MELAS and NARP mitochondrial DNA mutations. Mitochondrion 7: 80-88.

Fukuhara N, Tokiguchi S, Shirakawa K, Tsubaki T (1980). Myoclonus epilepsy associated with ragged-red fibres (mitochondrial abnormalities ): disease entity or a syndrome? Light-and electron-microscopic studies of two cases and review of literature. J Neurol Sci 47: 117-133.

Gohil VM, Sheth SA, Nilsson R, Wojtovich AP, Lee JH, Perocchi F et al (2010). Nutrient-sensitized screening for drugs that shift energy metabolism from mitochondrial respiration to glycolysis. Nat Biotechnol 28: 249-255.

Goldring ES, Grossman LI, Krupnick D, Cryer DR, Marmur J (1970). The petite mutation in yeast. Loss of mitochondrial deoxyribonucleic acid during induction of petites with ethidium bromide. J Mol Biol 52: 323-335.

Griparic L, van der Bliek AM (2001). The many shapes of mitochondrial membranes. Traffic 2: 235-244.

Hatefi Y (1985). The mitochondrial electron transport and oxidative phosphorylation system. Annu Rev Biochem 54: 1015-1069.

Hayashi J, Ohta S, Kikuchi A, Takemitsu M, Goto Y, Nonaka I (1991). Introduction of disease-related mitochondrial DNA deletions into HeLa cells lacking mitochondrial DNA results in mitochondrial dysfunction. Proc Natl Acad Sci U S A 88: 10614-10618.

Heggeness MH, Simon M, Singer SJ (1978). Association of mitochondria with microtubules in cultured cells. Proc Natl Acad Sci U S A 75: 3863-3866.

Hematti P (2008). Role of mesenchymal stromal cells in solid organ transplantation. Transplant Rev (Orlando) 22: 262-273.

Heytler PG (1979). Uncouplers of oxidative phosphorylation. Methods Enzymol 55: 462-442.

Hirko AC, Dallasen R, Jomura S, Xu Y (2008). Modulation of inflammatory responses after global ischemia by transplanted umbilical cord matrix stem cells. Stem Cells 26: 2893-2901.

Hsieh JY, Fu YS, Chang SJ, Tsuang YH, Wang HW (2010). Functional module analysis reveals differential osteogenic and stemness potentials in human mesenchymal stem cells from bone marrow and Wharton's jelly of umbilical cord. Stem Cells Dev 19: 1895-1910.

Ingman M, Kaessmann H, Paabo S, Gyllensten U (2000). Mitochondrial genome variation and the origin of modern humans. Nature 408: 708-713.

Ishige I, Nagamura-Inoue T, Honda MJ, Harnprasopwat R, Kido M, Sugimoto M et al (2009). Comparison of mesenchymal stem cells derived from arterial, venous, and Wharton's jelly explants of human umbilical cord. International journal of hematology 90: 261-269.

Islam MN, Das SR, Emin MT, Wei M, Sun L, Westphalen K et al (2012). Mitochondrial transfer from bone-marrow-derived stromal cells to pulmonary alveoli protects against acute lung injury. Nat Med 18: 759-765.

Jenuth JP, Peterson AC, Fu K, Shoubridge EA (1996). Random genetic drift in the female germline explains the rapid segregation of mammalian mitochondrial DNA. Nat Genet 14: 146-151.

Karahuseyinoglu S, Cinar O, Kilic E, Kara F, Akay GG, Demiralp DO et al (2007). Biology of stem cells in human umbilical cord stroma: in situ and in vitro surveys. Stem Cells 25: 319-331.

Kasahara A, Scorrano L (2014). Mitochondria: from cell death executioners to regulators of cell differentiation. Trends Cell Biol 24: 761-770.

Kaufman BA, Durisic N, Mativetsky JM, Costantino S, Hancock MA, Grutter P et al (2007). The mitochondrial transcription factor TFAM coordinates the assembly of multiple DNA molecules into nucleoid-like structures. Mol Biol Cell 18: 3225-3236.

Kearns TP, Sayre GP (1958). Retinitis pigmentosa, external ophthalmophegia, and complete heart block: unusual syndrome with histologic study in one of two cases. AMA Arch Ophthalmol 60: 280-289.

Kern S, Eichler H, Stoeve J, Kluter H, Bieback K (2006). Comparative analysis of mesenchymal stem cells from bone marrow, umbilical cord blood, or adipose tissue. Stem Cells 24: 1294-1301.

Kim DW, Staples M, Shinozuka K, Pantcheva P, Kang SD, Borlongan CV (2013). Wharton's Jelly-Derived Mesenchymal Stem Cells: Phenotypic Characterization and Optimizing Their Therapeutic Potential for Clinical Applications. Int J Mol Sci 14: 11692-11712.

Kimura R, Ishikawa C, Rokkaku T, Janknecht R, Mori N (2011). Phosphorylated c-Jun and Fra-1 induce matrix metalloproteinase-1 and thereby regulate invasion activity of 143B osteosarcoma cells. Biochim Biophys Acta 1813: 1543-1553.

King MP, Attardi G (1989). Human cells lacking mtDNA: repopulation with exogenous mitochondria by complementation. Science 246: 500-503.

King MP, Attardi G (1996). Isolation of human cell lines lacking mitochondrial DNA. Methods Enzymol 264: 304-313.

Kobayashi K, Kubota T, Aso T (1998). Study on myofibroblast differentiation in the stromal cells of Wharton's jelly: expression and localization of alpha-smooth muscle actin. Early Hum Dev 51: 223-233.

Koopman WJ, Willems PH, Smeitink JA (2012). Monogenic mitochondrial disorders. N Engl J Med 366: 1132-1141.

Korhonen JA, Pham XH, Pellegrini M, Falkenberg M (2004). Reconstitution of a minimal mtDNA replisome in vitro. EMBO J 23: 2423-2429.

Kwong JQ, Henning MS, Starkov AA, Manfredi G (2007). The mitochondrial respiratory chain is a modulator of apoptosis. J Cell Biol 179: 1163-1177.

La Rocca G, Anzalone R, Corrao S, Magno F, Loria T, Lo Iacono M et al (2009). Isolation and characterization of Oct-4+/HLA-G+ mesenchymal stem cells from human umbilical cord matrix: differentiation potential and detection of new markers. Histochemistry and cell biology 131: 267-282.

Leber T (1871). U¨ ber heredita¨ re und congenital angelegte Sehnervenleiden. Arch Ophthalmol 17: 43.

Levinger L, Jacobs O, James M (2001). In vitro 3'-end endonucleolytic processing defect in a human mitochondrial tRNA(Ser(UCN)) precursor with the U7445C substitution, which causes non-syndromic deafness. Nucleic Acids Res 29: 4334-4340.

Li X, Zhang Y, Yeung SC, Liang Y, Liang X, Ding Y et al (2014). Mitochondrial transfer of induced pluripotent stem cell-derived mesenchymal stem cells to airway epithelial cells attenuates cigarette smoke-induced damage. Am J Respir Cell Mol Biol 51: 455-465.

Ligon LA, Steward O (2000). Role of microtubules and actin filaments in the movement of mitochondria in the axons and dendrites of cultured hippocampal neurons. The Journal of comparative neurology 427: 351-361.

Lin HY, Liou CW, Chen SD, Hsu TY, Chuang JH, Wang PW et al (2015). Mitochondrial transfer from Wharton's jelly-derived mesenchymal stem cells to mitochondria-defective cells recaptures impaired mitochondrial function. Mitochondrion 22: 31-44.

Lin TK, Lin HY, Chen SD, Chuang YC, Chuang JH, Wang PW et al (2012). The creation of cybrids harboring mitochondrial haplogroups in the Taiwanese population of ethnic Chinese background: an extensive in vitro tool for the study of mitochondrial genomic variations. Oxid Med Cell Longev 2012: 824275.

Liot G, Bossy B, Lubitz S, Kushnareva Y, Sejbuk N, Bossy-Wetzel E (2009). Complex II inhibition by 3-NP causes mitochondrial fragmentation and neuronal cell death via an NMDA- and ROS-dependent pathway. Cell Death Differ 16: 899-909.

Liu CS, Chang JC, Kuo SJ, Liu KH, Lin TT, Cheng WL et al (2014). Delivering healthy mitochondria for the therapy of mitochondrial diseases and beyond. Int J Biochem Cell Biol 53: 141-146.

Lund RD, Wang S, Lu B, Girman S, Holmes T, Sauve Y et al (2007). Cells isolated from umbilical cord tissue rescue photoreceptors and visual functions in a rodent model of retinal disease. Stem Cells 25: 602-611.

Mancuso M, Filosto M, Mootha VK, Rocchi A, Pistolesi S, Murri L et al (2004). A novel mitochondrial tRNAPhe mutation causes MERRF syndrome. Neurology 62: 2119-2121.

Markov V, Kusumi K, Tadesse MG, William DA, Hall DM, Lounev V et al (2007). Identification of cord blood-derived mesenchymal stem/stromal cell populations with distinct growth kinetics, differentiation potentials, and gene expression profiles. Stem Cells Dev 16: 53-73.

Matsunoshita Y, Ijiri K, Ishidou Y, Nagano S, Yamamoto T, Nagao H et al (2011). Suppression of osteosarcoma cell invasion by chemotherapy is mediated by urokinase plasminogen activator activity via up-regulation of EGR1. PLoS One 6: e16234.

McCulloch V, Shadel GS (2003). Human mitochondrial transcription factor B1 interacts with the C-terminal activation region of h-mtTFA and stimulates transcription independently of its RNA methyltransferase activity. Mol Cell Biol 23: 5816-5824.

Melone MA, Tessa A, Petrini S, Lus G, Sampaolo S, di Fede G et al (2004). Revelation of a new mitochondrial DNA mutation (G12147A) in a MELAS/MERFF phenotype. Arch Neurol 61: 269-272.

Metodiev MD, Lesko N, Park CB, Camara Y, Shi Y, Wibom R et al (2009). Methylation of 12S rRNA is necessary for in vivo stability of the small subunit of the mammalian mitochondrial ribosome. Cell Metab 9: 386-397.

Miller SW, Trimmer PA, Parker WD, Jr., Davis RE (1996). Creation and characterization of mitochondrial DNA-depleted cell lines with "neuronal-like" properties. J Neurochem 67: 1897-1907.

Mishra P, Chan DC (2014). Mitochondrial dynamics and inheritance during cell division, development and disease. Nat Rev Mol Cell Biol 15: 634-646.

Mitchell KE, Weiss ML, Mitchell BM, Martin P, Davis D, Morales L et al (2003). Matrix cells from Wharton's jelly form neurons and glia. Stem Cells 21: 50-60.

Mokranjac D, Neupert W (2007). Protein import into isolated mitochondria. Methods Mol Biol 372: 277-286.

Moraes CT, Shanske S, Tritschler HJ, Aprille JR, Andreetta F, Bonilla E et al (1991). mtDNA depletion with variable tissue expression: a novel genetic abnormality in mitochondrial diseases. Am J Hum Genet 48: 492-501.

Morris RL, Hollenbeck PJ (1995). Axonal transport of mitochondria along microtubules and F-actin in living vertebrate neurons. J Cell Biol 131: 1315-1326.

Nakamura M, Nakano S, Goto Y, Ozawa M, Nagahama Y, Fukuyama H et al (1995). A novel point mutation in the mitochondrial tRNA(Ser(UCN)) gene detected in a family with MERRF/MELAS overlap syndrome. Biochem Biophys Res Commun 214: 86-93.

Newmeyer DD, Ferguson-Miller S (2003). Mitochondria: releasing power for life and unleashing the machineries of death. Cell 112: 481-490.

Noer A, Boquest AC, Collas P (2007). Dynamics of adipogenic promoter DNA methylation during clonal culture of human adipose stem cells to senescence. BMC Cell Biol 8: 18.

Ojala D, Montoya J, Attardi G (1981). tRNA punctuation model of RNA processing in human mitochondria. Nature 290: 470-474.

Pavlakis SG, Phillips PC, DiMauro S, De Vivo DC, Rowland LP (1984). Mitochondrial myopathy, encephalopathy, lactic acidosis, and strokelike episodes: a distinctive clinical syndrome. Ann Neurol 16: 481-488.

Pestryakov PE, Lavrik OI (2008). Mechanisms of single-stranded DNA-binding protein functioning in cellular DNA metabolism. Biochemistry (Mosc) 73: 1388-1404.

Plotnikov EY, Khryapenkova TG, Vasileva AK, Marey MV, Galkina SI, Isaev NK et al (2008). Cell-to-cell cross-talk between mesenchymal stem cells and cardiomyocytes in co-culture. J Cell Mol Med 12: 1622-1631.

Pozzan T, Magalhaes P, Rizzuto R (2000). The comeback of mitochondria to calcium signalling. Cell Calcium 28: 279-283.

Prasanna SJ, Gopalakrishnan D, Shankar SR, Vasandan AB (2010). Pro-inflammatory cytokines, IFNgamma and TNFalpha, influence immune properties of human bone marrow and Wharton jelly mesenchymal stem cells differentially. PLoS One 5: e9016.

Quintero OA, DiVito MM, Adikes RC, Kortan MB, Case LB, Lier AJ et al (2009). Human Myo19 is a novel myosin that associates with mitochondria. Curr Biol 19: 2008-2013.

Reinecke F, Smeitink JA, van der Westhuizen FH (2009). OXPHOS gene expression and control in mitochondrial disorders. Biochim Biophys Acta 1792: 1113-1121.

Roberti M, Polosa PL, Bruni F, Manzari C, Deceglie S, Gadaleta MN et al (2009). The MTERF family proteins: mitochondrial transcription regulators and beyond. Biochim Biophys Acta 1787: 303-311.

Rojewski MT, Weber BM, Schrezenmeier H (2008). Phenotypic Characterization of Mesenchymal Stem Cells from Various Tissues. Transfus Med Hemother 35: 168-184.

Ruthel G, Hollenbeck PJ (2003). Response of mitochondrial traffic to axon determination and differential branch growth. J Neurosci 23: 8618-8624.

Saben J, Thakali KM, Lindsey FE, Zhong Y, Badger TM, Andres A et al (2014). Distinct adipogenic differentiation phenotypes of human umbilical cord mesenchymal cells dependent on adipogenic conditions. Exp Biol Med (Maywood) 239: 1340-1351.

Sato M, Sato K (2011). Degradation of paternal mitochondria by fertilization-triggered autophagy in C. elegans embryos. Science 334: 1141-1144.

Sauvanet C, Duvezin-Caubet S, di Rago JP, Rojo M (2010). Energetic requirements and bioenergetic modulation of mitochondrial morphology and dynamics. Semin Cell Dev Biol 21: 558-565.

Scholte HR (1988). The biochemical basis of mitochondrial diseases. J Bioenerg Biomembr 20: 161-191.

Schultz BE, Chan SI (2001). Structures and proton-pumping strategies of mitochondrial respiratory enzymes. Annu Rev Biophys Biomol Struct 30: 23-65.

Selmani Z, Naji A, Zidi I, Favier B, Gaiffe E, Obert L et al (2008). Human leukocyte antigen-G5 secretion by human mesenchymal stem cells is required to suppress T lymphocyte and natural killer function and to induce CD4+CD25highFOXP3+ regulatory T cells. Stem Cells 26: 212-222.

Shereda RD, Kozlov AG, Lohman TM, Cox MM, Keck JL (2008). SSB as an organizer/mobilizer of genome maintenance complexes. Crit Rev Biochem Mol Biol 43: 289-318.

Shoubridge EA (1995). Segregation of mitochondrial DNAs carrying a pathogenic point mutation (tRNA(leu3243)) in cybrid cells. Biochem Biophys Res Commun 213: 189-195.

Spees JL, Olson SD, Whitney MJ, Prockop DJ (2006). Mitochondrial transfer between cells can rescue aerobic respiration. Proc Natl Acad Sci U S A 103: 1283-1288.

Starkov AA (2008). The role of mitochondria in reactive oxygen species metabolism and signaling. Ann N Y Acad Sci 1147: 37-52.

Stewart JB, Freyer C, Elson JL, Wredenberg A, Cansu Z, Trifunovic A et al (2008). Strong purifying selection in transmission of mammalian mitochondrial DNA. PLoS biology 6: e10.

Sutovsky P, Moreno RD, Ramalho-Santos J, Dominko T, Simerly C, Schatten G (1999). Ubiquitin tag for sperm mitochondria. Nature 402: 371-372.

Suzuki T, Nagao A (2011). Human mitochondrial diseases caused by lack of taurine modification in mitochondrial tRNAs. Wiley Interdiscip Rev RNA 2: 376-386.

Tang Y, Schon EA, Wilichowski E, Vazquez-Memije ME, Davidson E, King MP (2000). Rearrangements of human mitochondrial DNA (mtDNA): new insights into the regulation of mtDNA copy number and gene expression. Mol Biol Cell 11: 1471-1485.

Tatuch Y, Christodoulou J, Feigenbaum A, Clarke JT, Wherret J, Smith C et al (1992). Heteroplasmic mtDNA mutation (T----G) at 8993 can cause Leigh disease when the percentage of abnormal mtDNA is high. Am J Hum Genet 50: 852-858.

Taylor RW, Turnbull DM (2005). Mitochondrial DNA mutations in human disease. Nat Rev Genet 6: 389-402.

Tiao MM, Liou CW, Huang LT, Wang PW, Lin TK, Chen JB et al (2013). Associations of mitochondrial haplogroups b4 and e with biliary atresia and differential susceptibility to hydrophobic bile Acid. PLoS Genet 9: e1003696.

Trounce I, Neill S, Wallace DC (1994). Cytoplasmic transfer of the mtDNA nt 8993 T-->G (ATP6) point mutation associated with Leigh syndrome into mtDNA-less cells demonstrates cosegregation with a decrease in state III respiration and ADP/O ratio. Proc Natl Acad Sci U S A 91: 8334-8338.

Tuppen HA, Blakely EL, Turnbull DM, Taylor RW (2010). Mitochondrial DNA mutations and human disease. Biochim Biophys Acta 1797: 113-128.

Uccelli A, Moretta L, Pistoia V (2008). Mesenchymal stem cells in health and disease. Nature reviews Immunology 8: 726-736.

Vigilant L, Pennington R, Harpending H, Kocher TD, Wilson AC (1989). Mitochondrial DNA sequences in single hairs from a southern African population. Proc Natl Acad Sci U S A 86: 9350-9354.

Vives-Bauza C, Gonzalo R, Manfredi G, Garcia-Arumi E, Andreu AL (2006). Enhanced ROS production and antioxidant defenses in cybrids harbouring mutations in mtDNA. Neurosci Lett 391: 136-141.

Wai T, Teoli D, Shoubridge EA (2008). The mitochondrial DNA genetic bottleneck results from replication of a subpopulation of genomes. Nat Genet 40: 1484-1488.

Wang G, Shimada E, Zhang J, Hong JS, Smith GM, Teitell MA et al (2012). Correcting human mitochondrial mutations with targeted RNA import. Proc Natl Acad Sci U S A 109: 4840-4845.

Wang HS, Hung SC, Peng ST, Huang CC, Wei HM, Guo YJ et al (2004). Mesenchymal stem cells in the Wharton's jelly of the human umbilical cord. Stem Cells 22: 1330-1337.

Wang HS, Shyu JF, Shen WS, Hsu HC, Chi TC, Chen CP et al (2011). Transplantation of insulin-producing cells derived from umbilical cord stromal mesenchymal stem cells to treat NOD mice. Cell transplantation 20: 455-466.

Wang X, Gerdes HH (2015). Transfer of mitochondria via tunneling nanotubes rescues apoptotic PC12 cells. Cell Death Differ.

Wang Y, Bogenhagen DF (2006). Human mitochondrial DNA nucleoids are linked to protein folding machinery and metabolic enzymes at the mitochondrial inner membrane. J Biol Chem 281: 25791-25802.

Weaver D, Eisner V, Liu X, Varnai P, Hunyady L, Gross A et al (2014). Distribution and apoptotic function of outer membrane proteins depend on mitochondrial fusion. Mol Cell 54: 870-878.

Weiss ML, Anderson C, Medicetty S, Seshareddy KB, Weiss RJ, VanderWerff I et al (2008). Immune properties of human umbilical cord Wharton's jelly-derived cells. Stem Cells 26: 2865-2874.

Weng SW, Kuo HM, Chuang JH, Lin TK, Huang HL, Lin HY et al (2013). Study of insulin resistance in cybrid cells harboring diabetes-susceptible and diabetes-protective mitochondrial haplogroups. Mitochondrion 13: 888-897.

Westermann B (2012). Bioenergetic role of mitochondrial fusion and fission. Biochim Biophys Acta 1817: 1833-1838.

Wharton T (ed) (1996) Adenographia. Translated by s. Freer. Oxford University Press: Oxford, UK.

Wiseman A, Attardi G (1978). Reversible tenfod reduction in mitochondria DNA content of human cells treated with ethidium bromide. Mol Gen Genet 167: 51-63.

Yang CC, Shih YH, Ko MH, Hsu SY, Cheng H, Fu YS (2008). Transplantation of human umbilical mesenchymal stem cells from Wharton's jelly after complete transection of the rat spinal cord. PLoS One 3: e3336.

Yang X, Zhang M, Zhang Y, Li W, Yang B (2011). Mesenchymal stem cells derived from Wharton jelly of the human umbilical cord ameliorate damage to human endometrial stromal cells. Fertil Steril 96: 1029-1036.

Yasukawa T, Suzuki T, Ishii N, Ohta S, Watanabe K (2001). Wobble modification defect in tRNA disturbs codon-anticodon interaction in a mitochondrial disease. EMBO J 20: 4794-4802.

Zeviani M, Servidei S, Gellera C, Bertini E, DiMauro S, DiDonato S (1989). An autosomal dominant disorder with multiple deletions of mitochondrial DNA starting at the D-loop region. Nature 339: 309-311.

Zeviani M, Carelli V (2007). Mitochondrial disorders. Curr Opin Neurol 20: 564-571.

Zhang J, Nuebel E, Wisidagama DR, Setoguchi K, Hong JS, Van Horn CM et al (2012). Measuring energy metabolism in cultured cells, including human pluripotent stem cells and differentiated cells. Nat Protoc 7: 1068-1085.

Zuchner S, Mersiyanova IV, Muglia M, Bissar-Tadmouri N, Rochelle J, Dadali EL et al (2004). Mutations in the mitochondrial GTPase mitofusin 2 cause Charcot-Marie-Tooth neuropathy type 2A. Nat Genet 36: 449-451.
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:自定論文開放時間 user define
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus: 已公開 available


紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code