Responsive image
博碩士論文 etd-0628116-104605 詳細資訊
Title page for etd-0628116-104605
論文名稱
Title
探討在小鼠中LKB1及PTEN缺失所誘導之胃癌發生的分子機制
Genetically Engineered Mouse Model Recapitulating LKB1 and PTEN Loss In Gastric Cancer
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
75
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2016-07-27
繳交日期
Date of Submission
2016-08-01
關鍵字
Keywords
分子機制、LKB1、PTEN、動物模式、胃腺癌、胃癌
mouse model, PTEN, LKB1, Gastric cancer, adenocarcinoma
統計
Statistics
本論文已被瀏覽 5734 次,被下載 319
The thesis/dissertation has been browsed 5734 times, has been downloaded 319 times.
中文摘要
胃癌是一個進展快且具有高致死率的癌症,特別好發於亞洲地區。在分子病
理研究中,胃癌的起始及發展和 KRAS 的活化、E-cadherin 蛋白減少、P53、APC
及 PTEN 的失活有關,其相關機制都是在研究胃癌腫瘤的重要基礎。LKB1 為
serine/threonine 蛋白激酶,主要是腺嘌呤磷酸激酶活化蛋白激酶(AMPK)的上游活
化激酶,並且調控 E-cadherin 蛋白的表現。在過去的研究中,LKB1 的突變會導
致 Peutz-Jeghers 症候群,病人在胃腸道中會有息肉及惡性腫瘤的發生。PTEN 為
一種酪氨酸磷酸酶,其調節 AKT 途徑的活化,經常突變在許多類型的人類癌
症。
本研究利用小鼠之動物模式,搭配我們實驗室開發之 H + /K + ATPase Ccre,特
異性在在胃組織中同時剔除 LKB1 及 PTEN 基因,誘導使小鼠誘發產生和人類相
似之胃腺癌。而在剃除 LKB1 及 PTEN 的小鼠疾病模型中,發現小鼠外觀有出現
貧血之現象,以血液生化檢驗後更發現白血球大量升高,並且伴隨血小板增高。
在糞便也偵測到有潛血反應。在組織切片中確認更發現小鼠胃腫瘤組織呈現胃腺
癌之組織型態,並且在免疫組織染色中發現 LKB1 下游磷酸化 AMPK 減少、
PTEN 下游之磷酸化 AKT/mTOR 增加,及腫瘤幹細胞標記 CD44 上升、E-
cadherin 表現下降以及上皮-間質轉換之標記 SMA、MMP9 等上升,此外,也在
胃癌組織中體外培養出初代胃癌細胞,證明此基因轉殖鼠疾病模型具有能產生惡
性胃腺癌之能力。最後,人類胃腺癌細胞 AGS 剃除 LKB1 的表現,發現細胞生
長速度、癒合能力增加,與癌細胞之體外行為表現與活體內腫瘤進展行為不謀而
合。希望藉由此動物模式追加分析探討其組織病變分子改變模式、血管新生、腫
瘤微環境之改變,此研究結果將有助於了解並解釋胃炎臨床之基因病變與徵狀的
關係發生,以及潛在可能惡化的模式因素,全面性了解胃癌惡化的機轉、並開發
新的治療打擊胃癌的相關藥物。
Abstract
Gastric cancer (GC) is an aggressive disease with the highest rate of mortality among cancers and is the second leading cause of cancer death worldwide. Recent molecular pathology studies have elucidated a detailed profile of genetic lesions associated with GC initiation and progression—activation KRAS and inactivation or loss of E-cadherin, P53, APC and PTEN—providing a foundation for investigation of the biological and biochemical basis for this malignancy. LKB1, also known as Serine/threonine kinase 11 (STK11), encodes a serine/threonine kinase that directly phosphorylates and activates AMPK, a cellular metabolic kinase. LKB1-AMPK pathway function also includes the maintenance of epithelial junction stability by regulating E-cadherin expression. In addition, LKB1 mutations are associated with the Peutz-Jeghers syndrome (PJS) consisting of intestinal polyposis and other gastrointestinal malignancies. PTEN, a tyrosine phosphatase, which regulates the activation of AKT pathway, is frequently mutated in many types of human cancer. This study seeks to use the H+/K+ ATPase Cre transgene mice, developed in our lab, directs Cre recombinase to the stomach commencing to both abrogate LKB1 and PTEN function in a stomach-specific manor to induce the development and metastatic progression of gastric adenocarcinomas, with similarities to human gastric adenocarcinoma. We also determine how these alterations contributes to gastric tumor histopathologic progression, invasive and metastatic potential, angiogenic and tumor stromal microenvironment. Meanwhile, information about responses in a bona fide GC model will likely contribute to interpreting those clinical results, are they positive or negative, and potentially might help guide further trial designs to combat stomach cancer.
目次 Table of Contents
國立中山大學研究生學位論文審定書+i
中文摘要+ii
Abstract+iii
Abbreviation+v
Introduction+1
Material and Method+8
Results+16
Discussion+27
Figures+33
Tables+59
References+62
參考文獻 References
1. Tan, P. and K.G. Yeoh, Genetics and Molecular Pathogenesis of Gastric Adenocarcinoma. Gastroenterology, 2015. 149(5): p. 1153-1162 e3.
2. Hölscher, A.H., et al., Early Gastric Cancer: Lymph Node Metastasis Starts With Deep Mucosal Infiltration. Annals of Surgery, 2009. 250(5): p. 791-797.
3. McLean, M.H. and E.M. El-Omar, Genetics of gastric cancer. Nat Rev Gastroenterol Hepatol, 2014. 11(11): p. 664-74.
4. Sano, T. and T. Aiko, New Japanese classifications and treatment guidelines for gastric cancer: revision concepts and major revised points. Gastric Cancer, 2011. 14(2): p. 97-100.
5. Wadhwa, R., et al., Gastric cancer-molecular and clinical dimensions. Nat Rev Clin Oncol, 2013. 10(11): p. 643-55.
6. Yuasa, Y., Control of gut differentiation and intestinal-type gastric carcinogenesis. Nat Rev Cancer, 2003. 3(8): p. 592-600.
7. Gupta, A., et al., Loss of anterior gradient 2 (Agr2) expression results in hyperplasia and defective lineage maturation in the murine stomach. J Biol Chem, 2013. 288(6): p. 4321-33.
8. Choi, E., et al., Cell lineage distribution atlas of the human stomach reveals heterogeneous gland populations in the gastric antrum. Gut, 2014. 63(11): p. 1711-20.
9. Johansson, M.E., H. Sjovall, and G.C. Hansson, The gastrointestinal mucus system in health and disease. Nat Rev Gastroenterol Hepatol, 2013. 10(6): p. 352-61.
10. Taupin, D. and D.K. Podolsky, Trefoil factors: initiators of mucosal healing. Nat Rev Mol Cell Biol, 2003. 4(9): p. 721-32.
11. Lennerz, J.K., et al., The transcription factor MIST1 is a novel human gastric chief cell marker whose expression is lost in metaplasia, dysplasia, and carcinoma. Am J Pathol, 2010. 177(3): p. 1514-33.
12. Han, M.E. and S.O. Oh, Gastric stem cells and gastric cancer stem cells. Anat Cell Biol, 2013. 46(1): p. 8-18.
13. Bessede, E., et al., Helicobacter pylori infection and stem cells at the origin of gastric cancer. Oncogene, 2015. 34(20): p. 2547-55.
14. Jian, S.F., et al., Utilization of liquid chromatography mass spectrometry analyses to identify LKB1-APC interaction in modulating Wnt/beta-catenin pathway of lung cancer cells. Mol Cancer Res, 2014. 12(4): p. 622-35.
15. Zbuk, K.M. and C. Eng, Hamartomatous polyposis syndromes. Nat Clin Pract Gastroenterol Hepatol, 2007. 4(9): p. 492-502.
16. Momcilovic, M. and D.B. Shackelford, Targeting LKB1 in cancer - exposing and exploiting vulnerabilities. Br J Cancer, 2015. 113(4): p. 574-84.
17. Chenette, E.J., Interrogating Lkb1 function. Nature Cell Biology, 2013. 15(2): p. 141-141.
18. Shackelford, D.B. and R.J. Shaw, The LKB1-AMPK pathway: metabolism and growth control in tumour suppression. Nat Rev Cancer, 2009. 9(8): p. 563-75.
19. Katajisto, P., et al., LKB1 signaling in mesenchymal cells required for suppression of gastrointestinal polyposis. Nat Genet, 2008. 40(4): p. 455-9.
20. Mihaylova, M.M. and R.J. Shaw, The AMPK signalling pathway coordinates cell growth, autophagy and metabolism. Nat Cell Biol, 2011. 13(9): p. 1016-23.
21. Doerks, T., et al., Systematic identification of novel protein domain families associated with nuclear functions. Genome Res, 2002. 12(1): p. 47-56.
22. Guertin, D.A. and D.M. Sabatini, Defining the role of mTOR in cancer. Cancer Cell, 2007. 12(1): p. 9-22.
23. <Targeting the PI3K-Akt-mTOR pathway_effective combinations.pdf>.
24. Hollander, M.C., G.M. Blumenthal, and P.A. Dennis, PTEN loss in the continuum of common cancers, rare syndromes and mouse models. Nat Rev Cancer, 2011. 11(4): p. 289-301.
25. Matsuoka, T. and M. Yashiro, The Role of PI3K/Akt/mTOR Signaling in Gastric Carcinoma. Cancers (Basel), 2014. 6(3): p. 1441-63.
26. Song, M.S., L. Salmena, and P.P. Pandolfi, The functions and regulation of the PTEN tumour suppressor. Nat Rev Mol Cell Biol, 2012. 13(5): p. 283-96.
27. Fei, G., et al., Reduced PTEN expression in gastric cancer and in the gastric mucosa of gastric cancer relatives. European Journal of Gastroenterology & Hepatology, 2002. 14(3): p. 297-303.
28. Yang, Z., et al., Reduced expression of PTEN and increased PTEN phosphorylation at residue Ser380 in gastric cancer tissues: a novel mechanism of PTEN inactivation. Clin Res Hepatol Gastroenterol, 2013. 37(1): p. 72-9.
29. Hallinan, J.T. and S.K. Venkatesh, Gastric carcinoma: imaging diagnosis, staging and assessment of treatment response. Cancer Imaging, 2013. 13: p. 212-27.
30. Leushacke, M. and N. Barker, Lgr5 and Lgr6 as markers to study adult stem cell roles in self-renewal and cancer. Oncogene, 2012. 31(25): p. 3009-22.
31. Shimizu, T., et al., Characterization of progressive metaplasia in the gastric corpus mucosa of Mongolian gerbils infected with Helicobacter pylori. J Pathol, 2016.
32. Yoshizawa, N., et al., Emergence of spasmolytic polypeptide-expressing metaplasia in Mongolian gerbils infected with Helicobacter pylori. Lab Invest, 2007. 87(12): p. 1265-76.
33. Nam, K.T., et al., Spasmolytic polypeptide-expressing metaplasia (SPEM) in the gastric oxyntic mucosa does not arise from Lgr5-expressing cells. Gut, 2012. 61(12): p. 1678-85.
34. <Gastric Cancer_Introduction, Pathology, Epidemiology.pdf>.
35. Hu, B., et al., Gastric cancer: Classification, histology and application of molecular pathology. J Gastrointest Oncol, 2012. 3(3): p. 251-61.
36. Mandal, P.K., et al., Mucin histochemistry of stomach in metaplasia and adenocarcinoma: An observation. Indian Journal of Medical and Paediatric Oncology : Official Journal of Indian Society of Medical & Paediatric Oncology, 2013. 34(4): p. 229-233.
37. <AMPK as a metabolic tumor suppressor_ control of metabolism.pdf>.
38. <Role of AMPK in regulation of LC3 lipidation as a marker of autophagy inskeletal muscle.pdf>.
39. Palomares, O., et al., Regulatory T cells and immune regulation of allergic diseases: roles of IL-10 and TGF-beta. Genes Immun, 2014. 15(8): p. 511-20.
40. Sanjabi, S., et al., Anti-inflammatory and pro-inflammatory roles of TGF-beta, IL-10, and IL-22 in immunity and autoimmunity. Curr Opin Pharmacol, 2009. 9(4): p. 447-53.
41. Wang, S., et al., SOX2, a predictor of survival in gastric cancer, inhibits cell proliferation and metastasis by regulating PTEN. Cancer Lett, 2015. 358(2): p. 210-9.
42. Tsukamoto, T., et al., Sox2 expression in human stomach adenocarcinomas with gastric and gastric-and-intestinal-mixed phenotypes. Histopathology, 2005. 46(6): p. 649-658.
43. Mutoh, H., M. Sashikawa, and K. Sugano, Sox2 expression is maintained while gastric phenotype is completely lost in Cdx2-induced intestinal metaplastic mucosa. Differentiation, 2011. 81(2): p. 92-98.
44. Jung, K.H., et al., Decreased expression of TFF2 and gastric carcinogenesis. Molecular & Cellular Toxicology, 2010. 6(3): p. 261-269.
45. Barros, R., et al., Gastric intestinal metaplasia revisited: function and regulation of CDX2. Trends Mol Med, 2012. 18(9): p. 555-63.
46. Klonisch, T., et al., Cancer stem cell markers in common cancers - therapeutic implications. Trends Mol Med, 2008. 14(10): p. 450-60.
47. Mao, J., et al., Roles of Wnt/beta-catenin signaling in the gastric cancer stem cells proliferation and salinomycin treatment. Cell Death Dis, 2014. 5: p. e1039.
48. Mills, J.C. and R.A. Shivdasani, Gastric epithelial stem cells. Gastroenterology, 2011. 140(2): p. 412-24.
49. Takebe, N., et al., Targeting Notch, Hedgehog, and Wnt pathways in cancer stem cells: clinical update. Nat Rev Clin Oncol, 2015. 12(8): p. 445-64.
50. Qiao, X.T. and D.L. Gumucio, Current molecular markers for gastric progenitor cells and gastric cancer stem cells. J Gastroenterol, 2011. 46(7): p. 855-65.
51. Takaishi, S., et al., Identification of gastric cancer stem cells using the cell surface marker CD44. Stem Cells, 2009. 27(5): p. 1006-20.
52. Vries, R.G., M. Huch, and H. Clevers, Stem cells and cancer of the stomach and intestine. Mol Oncol, 2010. 4(5): p. 373-84.
53. Martin-Belmonte, F. and M. Perez-Moreno, Epithelial cell polarity, stem cells and cancer. Nat Rev Cancer, 2012. 12(1): p. 23-38.
54. Sebbagh, M., et al., Regulation of LKB1/STRAD localization and function by E-cadherin. Curr Biol, 2009. 19(1): p. 37-42.
55. van der Gun, B.T., et al., EpCAM in carcinogenesis: the good, the bad or the ugly. Carcinogenesis, 2010. 31(11): p. 1913-21.
56. Winter, M.J., et al., Expression of Ep-CAM shifts the state of cadherin-mediated adhesions from strong to weak. Experimental Cell Research, 2003. 285(1): p. 50-58.
57. <Expression of matrix metalloproteinases MMP-2 and MMP-9 in gastric cancer and their relation to claudin-4 expression.pdf>.
58. Shan, Y.Q., et al., MMP-9 is increased in the pathogenesis of gastric cancer by the mediation of HER2. Cancer Gene Ther, 2015. 22(3): p. 101-7.
59. Egeblad, M. and Z. Werb, New functions for the matrix metalloproteinases in cancer progression. Nat Rev Cancer, 2002. 2(3): p. 161-74.
60. Bayrak, R., H. Haltas, and S. Yenidunya, The value of CDX2 and cytokeratins 7 and 20 expression in differentiating colorectal adenocarcinomas from extraintestinal gastrointestinal adenocarcinomas: cytokeratin 7-/20+ phenotype is more specific than CDX2 antibody. Diagn Pathol, 2012. 7: p. 9.
61. Terada, T., An immunohistochemical study of primary signet-ring cell carcinoma of the stomach and colorectum: II. Expression of MUC1, MUC2, MUC5AC, and MUC6 in normal mucosa and in 42 cases. Int J Clin Exp Pathol, 2013. 6(4): p. 613-21.
62. Chu, P.G., et al., Determining the site of origin of mucinous adenocarcinoma: an immunohistochemical study of 175 cases. Am J Surg Pathol, 2011. 35(12): p. 1830-6.
63. Chu, P.G., et al., Determining the Site of Origin of Mucinous Adenocarcinoma: An Immunohistochemical Study of 175 Cases. The American Journal of Surgical Pathology, 2011. 35(12): p. 1830-1836.
64. Gurbuz, Y. and N. Kose, Cytokeratin expression patterns of gastric carcinomas according to Lauren and Goseki classification. Appl Immunohistochem Mol Morphol, 2006. 14(3): p. 303-8.
65. Park, S.Y., et al., Expression of cytokeratins 7 and 20 in primary carcinomas of the stomach and colorectum and their value in the differential diagnosis of metastatic carcinomas to the ovary. Hum Pathol, 2002. 33(11): p. 1078-85.
66. Chang, S., et al., HOTTIP and HOXA13 are oncogenes associated with gastric cancer progression. Oncol Rep, 2016. 35(6): p. 3577-85.
67. Peng, L., et al., HOXA13 exerts a beneficial effect in albumin-induced epithelial-mesenchymal transition via the glucocorticoid receptor signaling pathway in human renal tubular epithelial cells. Mol Med Rep, 2016. 14(1): p. 271-6.
68. Gu, Z.D., et al., HOXA13 promotes cancer cell growth and predicts poor survival of patients with esophageal squamous cell carcinoma. Cancer Res, 2009. 69(12): p. 4969-73.
69. Ko, S.Y., et al., HOXA9 promotes ovarian cancer growth by stimulating cancer-associated fibroblasts. J Clin Invest, 2012. 122(10): p. 3603-17.
70. Takashima, A., et al., Standard First-Line Chemotherapy for Metastatic Gastric Cancer in Japan Has Met the Global Standard: Evidence From Recent Phase III Trials. Gastrointestinal Cancer Research : GCR, 2009. 3(6): p. 239-244.
71. Sanchez-Cespedes, M., A role for LKB1 gene in human cancer beyond the Peutz-Jeghers syndrome. Oncogene, 2007. 26(57): p. 7825-32.
72. Takeda, H., et al., Accelerated onsets of gastric hamartomas and hepatic adenomas/carcinomas in Lkb1+/-p53-/- compound mutant mice. Oncogene, 2006. 25(12): p. 1816-20.
73. Sun, J., et al., Decreased Expression of Tumor-suppressor Gene LKB1 Correlates with Poor Prognosis in Human Gastric Cancer. Anticancer Res, 2016. 36(3): p. 869-75.
74. Krieg, L., et al., Mutation of the gastric hydrogen-potassium ATPase alpha subunit causes iron-deficiency anemia in mice. Blood, 2011. 118(24): p. 6418-25.
75. Zamchegk , N., et al., Occurrence of Gastric Cancer among Patients with Pernicious Anemia at the Boston City Hospital. New England Journal of Medicine, 1955. 252(26): p. 1103-1110.
76. Barker, N., et al., Lgr5(+ve) stem cells drive self-renewal in the stomach and build long-lived gastric units in vitro. Cell Stem Cell, 2010. 6(1): p. 25-36.
77. Arnold, K., et al., Sox2(+) adult stem and progenitor cells are important for tissue regeneration and survival of mice. Cell Stem Cell, 2011. 9(4): p. 317-29.
78. Stange, D.E., et al., Differentiated Troy+ chief cells act as reserve stem cells to generate all lineages of the stomach epithelium. Cell, 2013. 155(2): p. 357-68.
79. Dhar, D.K., et al., Expression of Cytoplasmic TFF2 Is a Marker of Tumor Metastasis and Negative Prognostic Factor in Gastric Cancer. Laboratory Investigation, 2003. 83(9): p. 1343-1352.
80. Hanby, A.M., et al., The mucous neck cell in the human gastric corpus: a distinctive, functional cell lineage. The Journal of Pathology, 1999. 187(3): p. 331-337.
81. Kanagavel, D., et al., A prognostic model in patients treated for metastatic gastric cancer with second-line chemotherapy. Ann Oncol, 2010. 21(9): p. 1779-85.
82. Huang, L., R.-L. Wu, and A.M. Xu, Epithelial-mesenchymal transition in gastric cancer. American Journal of Translational Research, 2015. 7(11): p. 2141-2158.
83. Peng, Z., et al., Role of epithelial-mesenchymal transition in gastric cancer initiation and progression. World J Gastroenterol, 2014. 20(18): p. 5403-10.
84. Lamouille, S., J. Xu, and R. Derynck, Molecular mechanisms of epithelial-mesenchymal transition. Nat Rev Mol Cell Biol, 2014. 15(3): p. 178-96.
85. de Lau, W., et al., Lgr5 homologues associate with Wnt receptors and mediate R-spondin signalling. Nature, 2011. 476(7360): p. 293-7.
86. Anastas, J.N. and R.T. Moon, WNT signalling pathways as therapeutic targets in cancer. Nat Rev Cancer, 2013. 13(1): p. 11-26.
87. Abo, A. and H. Clevers, Modulating WNT receptor turnover for tissue repair. Nat Biotechnol, 2012. 30(9): p. 835-6.
88. Huiping, C., et al., Alterations of E-cadherin and β-catenin in gastric cancer. BMC Cancer, 2001. 1(1): p. 1-7.
89. Nabais, S., et al., Patterns of beta-catenin expression in gastric carcinoma: clinicopathological relevance and mutation analysis. Int J Surg Pathol, 2003. 11(1): p. 1-9.
90. Coussens, L.M. and Z. Werb, Inflammation and cancer. Nature, 2002. 420(6917): p. 860-7.
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:自定論文開放時間 user define
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus: 已公開 available


紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code