Responsive image
博碩士論文 etd-0628116-114955 詳細資訊
Title page for etd-0628116-114955
論文名稱
Title
探討小鼠中Mst1/Mst2在早期腦部發育及形成多形性神經膠質母細胞瘤中之角色
The role of Mst1/Mst2 in early brain development and glioblastoma formation of the mice
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
83
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2016-07-27
繳交日期
Date of Submission
2016-07-28
關鍵字
Keywords
Hippo pathway、YAP1、MST1/2、Verteporfin、細胞凋亡、動物模式、神經膠質瘤、神經膠質母細胞瘤
Mouse model, Glioma, YAP1, MST1/2, Hippo pathway, Glioblastoma, Apoptosis, Verteporfin
統計
Statistics
本論文已被瀏覽 5741 次,被下載 67
The thesis/dissertation has been browsed 5741 times, has been downloaded 67 times.
中文摘要
多形性神經膠質母細胞瘤(Glioblastoma multiforme, GBM)是一種非常具有侵略性而且相當惡性末期的腦神經膠質瘤(glioma)。在歐洲及北美地區,每年每十萬人中就有2~3人被診斷出罹患GBM,平均在診斷出罹患GBM後病人的壽命通常只剩下約兩年的時間,即使利用手術切除腫瘤再加上放療、化療藥物的輔助治療,病人大多數仍會死於極高的復發率,所以目前最迫切的課題在於找出GBM為何如此具有抵抗性和其再復發性,好讓我們能更有效地去了解癌症形成的原因和建立其致病模式。Hippo pathway在哺乳類中扮演著控制器官大小的關鍵角色,藉由調控細胞的增生與凋亡來達成。當Hippo pathway中的MST1/2失去活性時,Hippo pathway最主要的下游調控蛋白YAP1會大量表現,從細胞質進入細胞核中和TEAD轉錄因子結合而活化許多和細胞增生與抑制細胞凋亡相關基因的表現,YAP1大量表現容易造成器官的過度生長而有癌化的現象發生,所以Hippo pathway也被稱作是一種抑癌基因路徑。根據一些研究指出,我們發現在許多的癌症中YAP1經常是扮演著致癌基因、具有高度表現量的角色,所以本篇的研究重點首先在於利用實驗室先前建立的老鼠glioma和GBM細胞株探討MST1和YAP1在腦癌中扮演之角色並尋找Hippo pathway與腦癌疾病致病分子路徑的交互作用為何?此外在腦癌的治療上,我們也找出YAP1 inhibitor-Verteporfin (VP)確實能對腦癌細胞株造成細胞凋亡的效果。最後我們也利用了Mst1/2缺失造成的YAP1的大量表現並搭配抑癌基因p53的缺失,兩者特異性地缺失在腦部的星狀膠質細胞,利用基因鼠動物模式,觀察MST1/2對於glioma或者是GBM惡化的影響機制為何,希望能建立一套Hippo pathway與GBM活體動物模式的研究平台並從中找出一些重要的GBM治療標靶節點。
Abstract
Glioblastoma multiforme (GBM) is the most aggressive and malignant primary brain tumor. Primary glioblastomas have a worse prognosis with a median survival of less than 2 years after diagnosis. The Hippo signaling transduction pathway plays multiple functions during organ development, adult tissues homeostasis and tumorigenesis, and its downstream mediator yes-associated protein 1 (YAP1) is known to function as a potent oncogene, which is amplified and overexpressed in various human cancers. The goal of this study is to study the role of Hippo pathway in GBM carcinogenesis. First, we selected primary murine glioblastoma cancer cell lines as an in vitro model system to study the functional roles of Hippo pathway in regulating the proliferation, adhesion and migration of GBM cells in vitro. Second, to identify the role of Hippo pathway in brain development, we selected GFAP drive Cre transgenic system to cross with conditional Mst1/Mst2 loxp mice to specific knockout Mst1/Mst2 (upstream kinases of Hippo pathway) expression in the glial cells during brain development. Moreover, to discovery the important function of the Hippo signaling involved in the development of GBM, we have established mouse models of GBM (activation of KrasG12D combined with p53 loss) for studying the critical roles of Hippo pathway in GBM progression. An understanding of the temporal regulation of Hippo during GBM progression and the identification of activation Hippo signaling combined p53 induced a transcriptional profiles— with respect to upstream activators and downstream networks, which may play an important node in the design of clinical approaches targeting Hippo signaling for the treatment of GBM.
目次 Table of Contents
論文審定書 i
Abstract in Chinese ii
Abstract in English iii
Abbreviations v
Introduction 1
Materials and Methods 9
Results 20
Discussion 29
Figures and Tables 36
References 71
參考文獻 References
Agnihotri, S., et al.
2013 Glioblastoma, a brief review of history, molecular genetics, animal models and novel therapeutic strategies. Arch Immunol Ther Exp (Warsz) 61(1):25-41.
Azzolin, L., et al.
2014 YAP/TAZ incorporation in the beta-catenin destruction complex orchestrates the Wnt response. Cell 158(1):157-70.
Bao, Y., et al.
2011 Mammalian Hippo pathway: from development to cancer and beyond. J Biochem 149(4):361-79.
Brault, V., et al.
2007 Cre/loxP-mediated chromosome engineering of the mouse genome. Handb Exp Pharmacol (178):29-48.
Brescia, P., et al.
2013 CD133 is essential for glioblastoma stem cell maintenance. Stem Cells 31(5):857-69.
Brodowska, K., et al.
2014 The clinically used photosensitizer Verteporfin (VP) inhibits YAP-TEAD and human retinoblastoma cell growth in vitro without light activation. Exp Eye Res 124:67-73.
Chan, S. W., et al.
2011 The Hippo pathway in biological control and cancer development. J Cell Physiol 226(4):928-39.
Chao, Y., et al.
2015 Mst1 regulates glioma cell proliferation via the AKT/mTOR signaling pathway. J Neurooncol 121(2):279-88.
Chen, C. H., et al.
2005 Overexpression of cyclin D1 and c-Myc gene products in human primary epithelial ovarian cancer. Int J Gynecol Cancer 15(5):878-83.
Fernandez, L. A., et al.
2009 YAP1 is amplified and up-regulated in hedgehog-associated medulloblastomas and mediates Sonic hedgehog-driven neural precursor proliferation. Genes Dev 23(23):2729-41.
Friedman, H. S., T. Kerby, and H. Calvert
2000 Temozolomide and treatment of malignant glioma. Clin Cancer Res 6(7):2585-97.
Ghazi, S. O., et al.
2012 Cell of origin determines tumor phenotype in an oncogenic Ras/p53 knockout transgenic model of high-grade glioma. J Neuropathol Exp Neurol 71(8):729-40.
Ghosh, K., and G. D. Van Duyne
2002 Cre-loxP biochemistry. Methods 28(3):374-83.
Gumbiner, B. M., and N. G. Kim
2014 The Hippo-YAP signaling pathway and contact inhibition of growth. J Cell Sci 127(Pt 4):709-17.
Harris, S. L., and A. J. Levine
2005 The p53 pathway: positive and negative feedback loops. Oncogene 24(17):2899-908.
Harvey, K. F., X. Zhang, and D. M. Thomas
2013 The Hippo pathway and human cancer. Nat Rev Cancer 13(4):246-57.
Kessel, D., M. G. Vicente, and J. J. Reiners, Jr.
2006 Initiation of apoptosis and autophagy by photodynamic therapy. Autophagy 2(4):289-90.
Krex, D., et al.
2007 Long-term survival with glioblastoma multiforme. Brain 130(Pt 10):2596-606.
Liu-Chittenden, Y., et al.
2012 Genetic and pharmacological disruption of the TEAD-YAP complex suppresses the oncogenic activity of YAP. Genes Dev 26(12):1300-5.
Lo, H. W., and M. C. Hung
2006 Nuclear EGFR signalling network in cancers: linking EGFR pathway to cell cycle progression, nitric oxide pathway and patient survival. Br J Cancer 94(2):184-8.
Louis, D. N., et al.
2007 The 2007 WHO classification of tumours of the central nervous system. Acta Neuropathol 114(2):97-109.
Maher, E. A., et al.
2001 Malignant glioma: genetics and biology of a grave matter. Genes Dev 15(11):1311-33.
Masui, K., T. F. Cloughesy, and P. S. Mischel
2012 Review: molecular pathology in adult high-grade gliomas: from molecular diagnostics to target therapies. Neuropathol Appl Neurobiol 38(3):271-91.
McNamara, M. G., S. Sahebjam, and W. P. Mason
2013 Emerging biomarkers in glioblastoma. Cancers (Basel) 5(3):1103-19.
Medema, J. P.
2013 Cancer stem cells: the challenges ahead. Nat Cell Biol 15(4):338-44.
Mo, J. S., H. W. Park, and K. L. Guan
2014 The Hippo signaling pathway in stem cell biology and cancer. EMBO Rep 15(6):642-56.
Mrugala, M. M., and M. C. Chamberlain
2008 Mechanisms of disease: temozolomide and glioblastoma--look to the future. Nat Clin Pract Oncol 5(8):476-86.
Nager, M., et al.
2012 beta-Catenin Signalling in Glioblastoma Multiforme and Glioma-Initiating Cells. Chemother Res Pract 2012:192362.
Nagy, A.
2000 Cre recombinase: the universal reagent for genome tailoring. Genesis 26(2):99-109.
Orr, B. A., et al.
2011 Yes-associated protein 1 is widely expressed in human brain tumors and promotes glioblastoma growth. J Neuropathol Exp Neurol 70(7):568-77.
Overholtzer, M., et al.
2006 Transforming properties of YAP, a candidate oncogene on the chromosome 11q22 amplicon. Proc Natl Acad Sci U S A 103(33):12405-10.
Politi, K., and W. Pao
2011 How genetically engineered mouse tumor models provide insights into human cancers. J Clin Oncol 29(16):2273-81.
Rich, J. N., and D. D. Bigner
2004 Development of novel targeted therapies in the treatment of malignant glioma. Nat Rev Drug Discov 3(5):430-46.
Sauer, B.
1998 Inducible gene targeting in mice using the Cre/lox system. Methods 14(4):381-92.
Stupp, R., et al.
2005 Radiotherapy plus concomitant and adjuvant temozolomide for glioblastoma. N Engl J Med 352(10):987-96.
Van Duyne, G. D.
2001 A structural view of cre-loxp site-specific recombination. Annu Rev Biophys Biomol Struct 30:87-104.
Varelas, X.
2014 The Hippo pathway effectors TAZ and YAP in development, homeostasis and disease. Development 141(8):1614-26.
Walrath, Jessica C., et al.
2010 Genetically Engineered Mouse Models in Cancer Research. 106:113-164.
Weller, M., et al.
2015 Glioma. Nat Rev Dis Primers 1:15017.
Wen, P. Y., and S. Kesari
2008 Malignant gliomas in adults. N Engl J Med 359(5):492-507.
Wen, W., et al.
2010 MST1 promotes apoptosis through phosphorylation of histone H2AX. J Biol Chem 285(50):39108-16.
Wesolowski, J. R., P. Rajdev, and S. K. Mukherji
2010 Temozolomide (Temodar). AJNR Am J Neuroradiol 31(8):1383-4.
Xia, Y., et al.
2014 YAP promotes ovarian cancer cell tumorigenesis and is indicative of a poor prognosis for ovarian cancer patients. PLoS One 9(3):e91770.
Xu, Y., I. Stamenkovic, and Q. Yu
2010 CD44 attenuates activation of the hippo signaling pathway and is a prime therapeutic target for glioblastoma. Cancer Res 70(6):2455-64.
Yoshida, T., et al.
2012 CD44 in human glioma correlates with histopathological grade and cell migration. Pathol Int 62(7):463-70.
Zeng, Q., and W. Hong
2008 The emerging role of the hippo pathway in cell contact inhibition, organ size control, and cancer development in mammals. Cancer Cell 13(3):188-92.
Zhang, L., et al.
2015 The Hippo Pathway Effector, YAP, Regulates Motility, Invasion and Castration-Resistant Growth of Prostate Cancer Cells. Mol Cell Biol.
Zhou, D., et al.
2009 Mst1 and Mst2 maintain hepatocyte quiescence and suppress hepatocellular carcinoma development through inactivation of the Yap1 oncogene. Cancer Cell 16(5):425-38.
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:自定論文開放時間 user define
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus: 已公開 available


紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code