Responsive image
博碩士論文 etd-0628116-124359 詳細資訊
Title page for etd-0628116-124359
論文名稱
Title
利用波導模態共振製作二維光柵感測器
Two-dimensional grating sensors based on guided-mode resonance effect
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
68
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2016-07-25
繳交日期
Date of Submission
2016-07-28
關鍵字
Keywords
波導模態共振效應、繞射光柵、薄膜材料感測器、雙參數感測器
guided mode resonance, guided mode resonance sensors, two-parameter sensor, Diffraction grating
統計
Statistics
本論文已被瀏覽 5658 次,被下載 553
The thesis/dissertation has been browsed 5658 times, has been downloaded 553 times.
中文摘要
在本研究中,我們利用表面光柵結構及波導模態共振效應來設計雙參數感測器。當光柵使入射光產生繞射後,會在波導層激發TE/TM 波導模態,且光柵結構會使激發的模態在傳播一段距離後形成洩漏的繞射光,當兩相鄰的洩漏繞射光達到相位匹配時,便可產生共振。此外,當外在環境參數變化時共振點會隨之移動,因此我們可以藉由量測共振點之位移量來感測環境參數。我們利用Comsol multiphysics來分析本論文所提出的反射式雙參數感測器與穿透式雙參數感測器的特性,可以得到反射式雙參數感測器的溫度靈敏度為-13.8pm/°C (TE波導模態)及-24pm/°C (TM波導模態),外在環境折射率變化的靈敏度為37nm/RIU(TE波導模態)及186nm/RIU(TM波導模態),而穿透式雙參數感測器之感測靈敏度則為-20pm/°C (TE波導模態)及-43pm/°C (TM波導模態)與27nm/RIU(TE波導模態)及54nm/RIU(TM波導模態)。另一方面,我們也設計了反射式雙參數薄膜感測器可以用來同時感測薄膜材料厚度與折射率,其感測薄膜厚度之靈敏度為0.18 nm/nm(TE波導模態) 及0.2 nm/nm(TM波導模態),而感測薄膜折射率之靈敏度為252.849nm/RIU(TE波導模態) 及190.5 nm/RIU(TM波導模態)。此外,有別於現今被提出的波導模態共振感測器,本研究所設計出的感測器均為雙參數的形式,因此我們能在量測一個參數時排除另一個參數的影響,以提高感測器的應用價值。
Abstract
In this study, we employ two-dimensional (2-D) grating structures and the guided mode resonance effect to design dual-parameter sensors. The incident light is diffracted by the 2-D grating to induce both the transverse electric (TE) guided mode and transverse magnetic (TM) guided mode of the waveguide. Due to the grating structures, the guided waveguide modes will leak out from the waveguide. As they fulfill the phase matching condition, we can observe resonance peaks in the spectrum. The resonance wavelengths can be affected by the external environment parameters. As a result, we can achieve dual-parameter sensing by measuring the TE/TM resonance wavelengths. The numerical tool we utilized is Comsol Multiphysics. For the reflection type dual-parameter sensor, the sensing sensitivities to temperature and environment refractive index are -13.8pm/°C (TE waveguide mode), -24pm/°C (TM waveguide mode), 37nm/RIU (TE waveguide mode), and 186nm/RIU (TM waveguide mode). Meanwhile, the calculated sensing sensitivities of transmission type dual-parameter sensor to temperature and environment refractive index are -20pm/°C (TE waveguide mode), -40pm/°C (TM waveguide mode), 27nm/RIU (TE waveguide mode), and 54nm/RIU (TM waveguide mode). We have also designed reflection type dual-parameter sensor for thin-film sensing. The sensing sensitivities to thin film thickness and index are 0.18 nm/nm (TE waveguide mode), 0.2 nm/nm (TM waveguide mode), 252.849nm/RIU (TE waveguide mode), and 190.5 nm/RIU (TM waveguide mode). Moreover, our proposed dual-parameter sensors can be used without cross-sensitivities to increase their sensing applications.
目次 Table of Contents
致謝 i
中文摘要 ii
Abstract iii
目錄 iv
圖目錄 vi
表目錄 ix
第一章 緒論 1
1-1光柵的繞射 1
1-2結合光柵結構的感測器 2
1-2.1表面電漿波感測器(surface plasmon polariton, SPP) 2
1-2.2波導模態共振感測器 (Guided-mode resonance effect, GMR) 6
1-3研究動機 9
第二章 波導模態共振的原理 10
2-1等效介質理論 11
2-2波導的色散理論 14
2-3波導模態共振的共振點設計 21
第三章 反射式雙參數感測器 22
3-1 元件建構-反射式雙參數感測器 22
3-1.1結構參數對共振點的特性分析 25
3-2雙參數感測特性 29
3-3反射式薄膜材料雙參數感測器 33
3-3.1元件架構-反射式薄膜材料雙參數感測器 33
3-3.2光柵週期對共振點的特性分析 36
3-3.3薄膜材料厚度與折射率的雙參數感測 37
第四章 穿透式雙參數感測器 41
4-1穿透式雙參數穿透式感測器元件設計 41
4-1.1結構參數對共振點的特性分析 44
4-1.2穿透式雙參數感測器的最佳化選擇 48
4-2雙參數的感測特性 49
第五章 結論 52
參考文獻 53
參考文獻 References
[1] I. Barrow, J. Flamsteed, J. Wallis, S. I. Newton, A. D. Morgan, “Correspondence of scientific men of the seventeenth Century: including letters of barrow, flamsteed, wallis, and newton, printed from the originals in the collection of the right honourable the earl of macclesfield”. University Press, vol. 2, pp. 254, 1841.
[2] B. A. d. Wissenschaften, Denkschriften der Königlichen Akademie der Wissenschaften zu München. Die Akademie, 1824
[3] W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature, vol. 424, pp. 824-830, 2003.
[4] R. Petit, Electromagnetic Theory of Gratings. Springer-Verlag, 1980.
[5] N. Peyghambarian, S. W. Koch, and A. Mysyrowicz, Introduction to Semiconductor Optics (Prentice Hall Series in Solid State Physical Electronics). Prentice Hall College Div, 1993.
[6] A. I. Väkeväinen, R. J. Moerland, H. T. Rekola, A. -P. Eskelinen, J. -P. Martikainen, D. -H. Kim, and P. Törmä, “Plasmonic surface lattice resonances at the strong coupling regime,” Nano Letters, vol. 14, pp. 1721-1727, 2014.
[7] J. R. Sambles, G. W. Bradbery, and F. Yang, “Optical excitation of surface plasoms: an introducton,” Contemporary physics, vol. 32, pp. 173-183, 1991.
[8] C. Hu and D. Liu, “High-performance grating coupled surface plasmon resonance sensor based on Al-Au bimetallic layer,” Modern Applied Science, vol. 4, pp. 8-13, 2010.
[9] M. P. Bernal, F. I. Baida, and W. Qiu, “Fano resonance-based highly sensitive, compact temperature sensor on thin film lithium niobate,” Optics Letters, vol. 41, pp. 1106-1109, 2015.
[10] Y. Zhang, T. Li, B. Zeng, H. Zhang, H. Lv, X. Huang, W. Zhang, and A. K. Azad, “A graphene based tunable terahertz sensor with double Fano resonances,” Nanoscale, vol. 7, pp. 12682-12688, 2015.
[11] S. Y. Chou, C. Keimel, and J. Gu, “Ultrafast and direct imprint of nanostructures in silicon,” Nature, vol. 417, pp. 835-837, 2002.
[12] C. H. Chen, T. H. Yu, and Y. C. Lee, “Direct patterning of metallic micro/nano-structures on flexible polymer substrates by roller-based contact printing and infrared heating,” Journal of Micromechanics and Microengineering, vol. 20, pp. 25-34, 2010.
[13] P. G. Hermannsson, G. Grȕtzner, and A. Kristensen “All-polymer photonic crystal slab sensor,” Optics Express, vol. 23, pp. 16529-16539, 2014.
[14] P. G. Hermannsson G. Grȕtzner, and A. Kristensen, “Absolute analytical prediction of photonic crystal guided mode resonan,” Applied Physics Letters, vol. 105, pp. 071103, 2014.
[15] Y. Huang1, “Sol-gel based fabrication methods for photonic crystals,” Nanotechnology, vol. 27, pp. 095302 , 2016.
[16] Lifeng Li, “A modal analysis of lamellar diffraction gratings in conical mountings,” Journal of Modern Optics, vol. 40, pp. 553-573, 1993.
[17] K. Okamoto, Fundamentals of optical waveguides. Elsevier, 2006.
[18] C. W Haggans and L. Li, “Effective-medium theory of zeroth-order lamellar gratings in conical mountings,” Journal of the Optical Society of America A, vol.10, pp. 2217-2225, 1993.
[19] S. S. Wang, R. Magnusson, J. S. Bagby, and M. G. Moharam, “Guided-mode resonanaces in planar dielectric-layer diffraction gratings,” Journal of the Optical Society of America A, vol. 7, pp. 1470-1474, 1990.

[20] S. M. Norton, T. Erdogan, and G. Michael Morris, “Coupled-mode theory of resonant-grating filters,” Journal of the Optical Society of America A, vol. 14, pp. 629-639, 1997.
[21] E. Kang, J. Park, and B. Bae, “Effect of organic modifiers on the thermo-optic
characteristics of inorganic–organic hybrid material films,” Journal of Materials Research, vol. 8, pp. 1889-1894, 2003
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:自定論文開放時間 user define
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus: 已公開 available


紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code