Responsive image
博碩士論文 etd-0628116-124442 詳細資訊
Title page for etd-0628116-124442
論文名稱
Title
利用蝕刻光子晶體光纖製作同軸光纖Mach-Zehnder干涉儀感測器
Fiber in-line Mach-Zehnder interferometer based on etched photonic crystal fiber
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
62
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2016-07-25
繳交日期
Date of Submission
2016-07-29
關鍵字
Keywords
溫度感測、光子晶體光纖、Mach-Zehnder光纖干涉儀、同軸光纖感測器、UV膠
Coaxial fiber sensor, Mach-Zehnder interferometer, photonic crystal fiber, temperature sensing, UV gel
統計
Statistics
本論文已被瀏覽 5736 次,被下載 31
The thesis/dissertation has been browsed 5736 times, has been downloaded 31 times.
中文摘要
光纖Mach-Zehnder干涉儀感測器具有體積小、抗電磁干擾以及結構簡單等優點,因此近年來被廣泛地提出及應用。本論文利用蝕刻光子晶體光纖並熔接單模光纖的方式,成功地製作出同軸Mach-Zehnder光纖干涉儀。我們製作出不同長度的元件,同時選擇適合的蝕刻參數使元件的頻譜表現最佳化,當元件長度為37.2μm時有最大的消光比為12dB,並且當蝕刻時間小於30分鐘時,元件的頻譜響應最佳,大約為12dB。
我們利用所製作出的同軸Mach-Zehnder光纖干涉儀進行折射率以及溫度感測,當外界環境折射率改變時,其折射率靈敏度約為6.42pm/RIU。接著,我們利用不同長度的元件進行溫度感測,當外界溫度變化範圍是30°C ~100°C時,其溫度靈敏度會隨元件長度上升而增加,約為21.4pm/°C ~24.4pm/°C。由實驗結果可知,我們提出的同軸Mach-Zehnder光纖干涉儀可避免折射率的交叉干擾,並能夠在不同折射率環境下進行溫度感測。最後,我們在同軸Fabry-Pérot光纖干涉儀的纖芯沾UV膠以改善其溫度靈敏度。根據實驗結果,沾膠前、後的靈敏度分別為8.5pm/°C與-104pm/°C,證實沾UV膠可以有效提升同軸Fabry-Pérot光纖干涉儀的溫度靈敏度。
Abstract
Fiber-optic Mach-Zehnder interferometers (MZIs) have been widely explored in many fields in recent years due to their advantages such as small size, immunity to electromagnetic interference and simple structure. In this thesis, we proposed a coaxial-fiber-based MZI by etching photonic crystal fibers (PCFs) which were spliced with SMFs. By varying the lengths of PCFs and etching parameters, we can obtain the optimized interference spectra. As the device length is 37.2μm, we can obtain the highest extinction ratio of 12dB. When the etching time is less than 30 minutes, the device have better sensing properties.
We have applied the coaxial-fiber-based MZI to refractive index (RI) and temperature sensing. By varying the surrounding RI, we can obtain the RI sensitivity of 6.42pm/RIU. We have also measured the temperature sensitivities samples with different lengths as the temperature varied from 30°C to 100°C. We can obtain the temperature sensitivities from 21.4pm/°C to 24.4pm/°C with the increasing device lengths. As a result, our proposed coaxial-fiber-based MZI can avoid RI disturbance while performing temperature sensing. Finally, to improve the temperature sensitivity, we have attached the UV gel onto the core of coaxial-fiber-based FPI. According to the experimental results, the temperature sensitivities of the FPI with and without UV gel are -104pm/°C and 8.5pm/°C, respectively.
目次 Table of Contents
目錄
學位論文審定書 i
中文摘要 ii
Abstract iii
目錄 iv
表目錄 vi
圖目錄 vii
第一章 緒論 1
1-1 光纖感測器 1
1-2 光纖干涉儀感測器簡介 3
1-2.1 光纖馬赫-桑德爾干涉儀(Fiber Mach-Zehnder interferometer) 4
1-2.2 光纖法布立-培若干涉儀(Fiber Fabry-Pérot interferometer) 7
1-2.3 光纖麥克森干涉儀(Fiber Michelson interferometer) 9
1-2.4 光纖薩格納克干涉儀(Fiber Sagnac interferometer)感測器 11
1-3 研究動機 14
第二章 Mach-Zehnder光纖干涉儀 15
2-1 Mach-Zehnder干涉儀 15
2-2 同軸Mach-Zehnder光纖干涉儀 16
2-3 元件製程 19
2-3.1 光纖介紹 19
2-3.2 元件製作 20
2-3.3 蝕刻製程特性 25
第三章 同軸Mach-Zehnder光纖干涉儀的干涉特性量測 27
3-1 元件量測架設 27
3-2 不同纖芯直徑的干涉特性量測 29
3-3 不同元件長度的干涉特性量測 32
第四章 同軸光纖干涉儀之感測應用 36
4-1 折射率感測 36
4-2 溫度感測 38
4-3 同軸Fabry-Pérot光纖干涉儀溫度敏感度改善 41
4-3.1 材料介紹 42
4-3.2 製程介紹 43
4-3.3 同軸Fabry-Pérot光纖干涉儀填膠後溫度量測 45
第五章 結論 47
參考文獻 48
參考文獻 References
[1] J. Hecht, “A short history of laser development,” Applied Optics, vol. 49, pp. F99-F122, 2010.
[2] K. C. Kao and G. A. Hockham, “Dielectric-fibre surface waveguides for optical frequencies,” Proceedings of the Institution of Electrical Engineers-London, vol. 113, pp. 1151-1158, 1966.
[3] Q. Wang, W. Wei, M. Guo, and Y. Zhao, “Optimization of cascaded fiber tapered Mach-Zehnder interferometer and refractive index sensing technology,” Sensors and Actuators B: Chemical, vol. 222, pp. 159-165, 2016.
[4] M. Shao, X. Qiao, H. Fu, Y. Liu, X. Zhao, and N. Yao, “Highly sensitive liquid core temperature sensor based on multimode interference effects,” Sensors, vol. 15, pp. 26929-26939, 2015.
[5] W. Peng, X. Zhang, Z. Gong, and Y. Liu, “Miniature fiber-optic strain sensor based on a hybrid interferometric structure,” IEEE Photonics Technology Letters, vol. 25, pp. 2385-2388, 2013.
[6] S. Dass and R. Jha, “Micrometer wire assisted inline Mach-Zehnder interferometric curvature sensor,” IEEE Photonics Technology Letters, vol. 28, pp. 31-34, 2016.
[7] Y. Ran, L. Xia, Y. Han, W. Li, J. Rohollahnejad, Y. Wen, and D. Liu, “Vibration fiber sensors based on sm-nc-sm fiber structure,” IEEE Photonics Journal, vol. 7, pp. 1-7, 2015.
[8] H. M. R. Gonçalves, L. Moreira, L. Pereira, P. Jorge, C.Gouveia, P. Martins-Lopes, and J. R. A. Fernandes, “Biosensor for label-free DNA quantification based on functionalized LPGs,” Biosensors and Bioelectronics, vol. 84, pp. 30-36, 2016.
[9] J. Zhao, S. Cao, C. Liao, Y. Wang, G. Wang, X. Xu, C. Fu, G. Xu, J. Lian, and Y. Wang, “Surface plasmon resonance refractive sensor based on silver-coated side-polished fiber,” Sensors and Actuators B: Chemical, vol.230, pp. 206-211, 2016.
[10] Q. Li, J. Gan, Y. Wu, Z. Zhang, J. Li, and Z. Yang, “High spatial resolution BOTDR based on differential brillouin spectrum technique,” IEEE Photonics Technology Letters, vol. 28, pp. 1493-1496, 2016.
[11] Z. L. Ran, Y. J. Rao, W. J. Liu, X. Liao, K. S. Chiang, “Laser-micromachined Fabry-Pérot optical fiber tip sensor for high-resolution temperature independent measurement of refractive index,” Optics Express, vol. 16, pp. 2252-2263, 2008.
[12] Z. Li, Y. Wang, C. Liao, S. Liu, J. Zhou, X. Zhong, Y. Liu, K. Yang, Q. Wang, and G. Yin, “Temperature-insensitive refractive index sensor based on in-fiber Michelson interferometer,” Sensors and Actuators B: Chemical, vol. 199, pp. 31-35, 2014.
[13] H. Y. Fu, H. Y. Tam, L. Y. Shao, X. Dong, P. K. A. Wai, C. Lu, and S. K. Khijwania, “Pressure sensor realized with polarization-maintaining photonic crystal fiber-based Sagnac interferometer, ” Applied Optics, vol. 47, pp. 2835-2839, 2008.
[14] N. Liu, M. Hu, H. Sun, T. Gang, Z. Yang, Q. Rong, and X. Qiao, “A fiber-optic refractometer for humidity measurements using an in-fiber Mach-Zehnder interferometer,” Optics Communications, vol. 367, pp. 1-5, 2016.
[15] S. Gao, W. Zhang, H. Zhang, and C. Zhang, “Reconfigurable and ultra-sensitive in-line Mach-Zehnder interferometer based on the fusion of microfiber and microfluid,” Applied Physics Letters, vol. 106, pp. 084103, 2015.
[16] M. Deng, C. P. Tang, T. Zhu, and Y. J. Rao, “PCF-Based Fabry-Pérot interferometric sensor for strain measurement at high temperatures,” IEEE Photonics Technology Letters, vol. 23, pp. 700-702, 2011.
[17] R. Gao, Y. Jiang, W. Ding, Z. Wang, and D. Liu, “Filmed extrinsic Fabry-Pérot interferometric sensors for the measurement of arbitrary refractive index of liquid,” Sensors and Actuators B, vol. 177, pp. 924-928, 2013.
[18] M. S. Ferreira, J. Bierlich, S. Unger, K. Schuster, J. L. Santos, and O. Frazão, “Post-processing of Fabry-Pérot microcavity tip sensor,” IEEE Photonics Technology Letters, vol. 25, pp. 1593-1596, 2013.
[19] X. Tan, Y. Geng, X. Li, R. Gao, and Z. Yin, “High temperature microstructured fiber sensor based on a partial-reflection-enabled intrinsic Fabry-Pérot interferometer,” Applied Optics, vol. 52, pp. 8195-8198, 2013.
[20] C. L. Lee, Y. W. You, J. H. Dai, J. M. Hsu, J. S. Horng, “Hygroscopic polymer microcavity fiber Fizeau interferometer incorporating a fiber Bragg grating for simultaneously sensing humidity and temperature,” Sensors and Actuators B: Chemical, vol. 222, pp. 339-346, 2016.
[21] J. Villatoro, V. Finazzzi, G.Badenes, and V. Pruneri, “Highly sensitive sensors based on photonic crystal fiber modal interferometers,” Journal of Sensors, vol. 2009, pp. 1-11, 2009.
[22] P.O. K. Krehl, History of shock waves, explosions and impact: A Chronological and Biographical Reference. Springer, 2009.
[23] H. Y. Choi, M. J. Kim, and B. H. Lee, “All-fiber Mach-Zehnder type interferometers formed in photonic crystal fiber,” Optics Express, vol. 15, pp. 5711-5720, 2007.
[24] J. Zheng, P. Yan, Y. Yu, Z. Ou, J. W, X. Chen, and C. Dua, “Temperature and index insensitive strain sensor based on a photonic crystal fiber in line Mach-Zehnder interferometer,” Optics Communications, vol. 297, pp. 7-11, 2013.
[25] J. H. Lim, H. S. Jang, and K. S. Lee, “Mach-Zehnder interferometer formed in a photonic crystal fiber based on a pair of long-period fiber gratings,” Optics letters, vol. 29, pp. 346-348, 2004.
[26] W. Yunus and A. B. A. Rahman, “Refractive index of solutions at high concentrations,” Applied Optics, vol. 27, pp. 3341-3343, 1988.
[27] C. L. Lee, L. H. Lee, H. E. Hwang, and J. M. Hsu, “Highly sensitive air-gap fiber Fabry-Pérot interferometers based on polymer-filled hollow core fibers,” IEEE Photonics Technology Letters, vol. 24, pp. 149-151, 2012.
[28] B. Sun, Y. Wang, J. Qu, C. Liao, G. Yin, J. He, J. Zhou, J. Tang, S. Liu, Z. Li, and Y. Liu, “Simultaneous measurement of pressure and temperature by employing Fabry-Pérot interferometer based on pendant polymer droplet,” Optics Express, vol. 23, pp. 1906-1911, 2015.
[29] Norland optical adhesive 65 datasheet, Norland Products Inc.
[30] C. L. Yeh “Coaxial-fiber-based Fabry-Pérot interferometers formed by etching photonics crystal fibers”, Master thesis, Department of photonics, National Sun Yat-sen University, Kaohsiung, Taiwan, Republic of China, 2015.
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:自定論文開放時間 user define
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus: 已公開 available


紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code