Responsive image
博碩士論文 etd-0628116-130659 詳細資訊
Title page for etd-0628116-130659
論文名稱
Title
結合Fabry-Pérot光纖干涉儀與布拉格光纖光柵之雙參數感測器
A Bi-parameter Sensor Based on Fabry-Pérot Interferometer Combined with Fiber Bragg Grating
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
79
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2016-07-25
繳交日期
Date of Submission
2016-10-29
關鍵字
Keywords
Fabry-Pérot光纖干涉儀、布拉格光纖光柵、雙參數感測器
Fabry-Pérot interferometer, fiber Bragg grating, bi-parameter sensor
統計
Statistics
本論文已被瀏覽 5697 次,被下載 31
The thesis/dissertation has been browsed 5697 times, has been downloaded 31 times.
中文摘要
本論文提出結合布拉格光纖光柵及空氣共振腔光纖Fabry-Pérot干涉儀的雙參數感測器,可同時感測環境溫度的變化及應變。因布拉格光纖光柵與空氣共振腔光纖Fabry-Pérot對環境溫度及應變有不同的感測靈敏度,因此我們可以藉由量測兩者的波長位移量來實現雙參數感測的目的。
我們藉由改變溫度、應變及折射率,來觀察光纖Fabry-Pérot干涉儀與布拉格光纖光柵的頻譜變化。經由實驗量測得到空芯光纖Fabry-Pérot干涉儀與其結合的布拉格光纖光柵對溫度感測靈敏度分別為-2.2pm/°C及10.6pm/°C,應變感測靈敏度為1.3pm/με及0.99464pm/με,且折射率靈敏度皆為0nm/RIU。而蝕刻式光纖Fabry-Pérot干涉儀與其結合的布拉格光纖光柵對溫度感測靈敏度分別為-2pm/°C及11.88pm/°C,應變感測靈敏度為8.79pm/με及0.9803pm/με,及折射率靈敏度也皆為0nm/RIU。因此本論文所提出可同時感測環境溫度及應變的雙參數感測器,在感測的過程之中可忽略環境折射率變化所造成的誤差,且有別於以往的單參數感測器的波長變化會同時受到多個環境參數影響,我們所提出的雙參數感測器可增加感測之精準度,大幅提升光纖感測器之應用價值。
Abstract
We proposed two novel and compact bi-parameter sensors for simultaneous sensing temperature and strain in this thesis, which are both composed of a single mode fiber Bragg grating (FBG) and an air-cavity-based intrinsic Fabry-Pérot interferometer (IFPI). We used two different simple methods to fabricate air-cavity-based IFPI sensors. One of the IFPI is formed by fusing a short section of hollow core fiber (HCF) between two single mode fibers (SMFs), and the other one is fabricated by wet etching SMF and fusion splicing it with another SMF.
The interference fringe of the IFPI and the Bragg wavelength of the FBG will shift with the variation of the ambient strain and temperature. The experimental results show that the temperature sensitivity and strain sensitivity for the HCF-based IFPI are -2.2 pm/°C and 1.3pm/με, respectively. The temperature sensitivity and strain sensitivity of the FBG which combined with the HCF-based IFPI are 10.6pm/°C and 0.99464pm/με, respectively. The temperature sensitivity and strain sensitivity of the IFPI based on etched fiber are -2pm/°C and 8.79pm/με respectively. The temperature sensitivity and strain sensitivity of the FBG which combined with IFPI based on etched fiber are 11.88 pm/°C and 0.9803pm/με, respectively. Moreover, our proposed bi-parameter sensors are insensitive to ambient refractive index variation, which highly increase their applications.
目次 Table of Contents
中文摘要 i
Abstract ii
目錄 iii
表目錄 v
圖目錄 vi
第一章 緒論 1
1-1 光纖感測器 1
1-2 光纖干涉儀感測器 3
1-2.1光纖麥克森干涉儀(Fiber Michelson interferometer) 4
1-2.2光纖馬赫-詹德干涉儀(Fiber Mach-Zehnder interferometer) 6
1-2.3光纖薩格奈克干涉儀(Fiber Sagnac interferometer) 8
1-2.4光纖法布里-柏羅干涉儀(Fiber Fabry-Pérot interferometer) 10
1-3 研究動機 12
第二章 光纖Fabry-Pérot干涉儀原理與製作 13
2-1 Fabry-Pérot干涉儀 13
2-2 光纖Fabry-Pérot干涉儀 21
2-3 空芯光纖Fabry-Pérot干涉儀製作 25
2-3.1元件製作 25
2-4 蝕刻式光纖Fabry-Pérot干涉儀製作 28
2-4.1材料介紹 28
2-4.2元件製作 28
2-4.3蝕刻製程特性 31
第三章 空芯光纖Fabry-Pérot干涉儀結合布拉格光纖光柵之雙參數感測器 33
3-1 基本特性量測 33
3-1.1實驗架設 33
3-1.2元件量測結果與討論 34
3-2 感測特性量測 37
3-2.1 溫度感測 39
3-2.2 應變感測 42
3-2.3 折射率感測 44
3-2.4 溫度與應變之雙參數感測矩陣 46
第四章 蝕刻式光纖Fabry-Pérot光涉儀結合布拉格光纖光柵之雙參數感測器 48
4-1 基本特性量測 48
4-1.1實驗架設 48
4-1.2 元件量測結果與討論 49
4-2 感測特性量測 52
4-2.1 溫度感測 54
4-2.2 應變感測 56
4-2.3 折射率感測 57
4-2.4 溫度與應變雙參數感測矩陣 59
第五章 結論 61
參考文獻 62
參考文獻 References
[1] J. M. Honig and C. N. R. Rao, Preparation and characterization of materials, Acdemic Press, 1981.
[2] G. Rajan, B. Liu, Y. H. Luo, E. Ambikairajah, and G. D. Peng, “High sensitivity force and pressure measurements using etched singlemode polymer fiber Bragg gratings,” IEEE Sensors Journal, vol. 13, pp. 1794-1800, 2013.
[3] D. W. Duan, Y. J. Rao, Y. S. Hou, and T. Zhu, “Microbubble based fiber-optic Fabry-Pérot interferometer formed by fusion splicing single-mode fibers for strain measurement,” Applied Optics, vol. 51, pp. 1033-1036, 2012.
[4] T. Y. Wang, S. X. Zheng, and Z. G. Yang, “A high precision displacement sensor using a low-finesse fiber-optic Fabry-Pérot interferometer,” Sensors and Actuators A-Physical, vol. 69, pp. 134-138, 1998.
[5] C. L. Lee, C. F. Lee, C. M. Li, T. C. Chiang, and Y. L. Hsiao, “Directional anemometer based on an anisotropic flat-clad tapered fiber Michelson interferometer,” Applied Physics Letters, vol. 101, pp. 23502(1)-23502(4), 2012.
[6] Y. Zhao, R. Q. Lv, D. Wang, and Q. Wang, “Fiber optic Fabry-Pérot magnetic field sensor with temperature compensation using a fiber Bragg grating,” IEEE Transactions on Instrumentation and Measurement, vol. 63, pp. 2210-2214, 2014.
[7] D. Su, X. G. Qiao, Q. Z. Rong, H. Sun, J. Zhang, Z. Y. Bai, Y. Y. Du, D. Y. Feng, Y. P. Wang, M. L. Hu, and Z. Y. Feng, “A fiber Fabry-Pérot interferometer based on a PVA coating for humidity measurement,” Optics Communications, vol. 311, pp. 107-110, 2014.
[8] L. B. Yuan, J. Yang, and Z. H. Liu, “A compact fiber-optic flow velocity sensor based on a twin-core fiber Michelson interferometer,” IEEE Sensors Journal, vol. 8, pp. 1114-1117, 2008.
[9] Y. L. Ran, L. Xia, Y. Han, W. Li, J. Rohollahnejad, Y. Q. Wen, and D. M. Liu, “Vibration fiber sensors based on SM-NC-SM fiber structure,” IEEE Photonics Journal, vol. 7, Art. ID. 6800607, 2015.
[10] L. Yuan, T. Wei, Q. Han, H. Z. Wang, J. Huang, L. Jiang, and H. Xiao, “Fiber inline Michelson interferometer fabricated by a femtosecond laser,” Optics Letters, vol. 37, pp. 4489-4491, 2012.
[11] R. C. Jorgenson and S. S. Yee, “A fiber-optic chemical sensor based on surface plasmon resonance,” Sensors and Actuators B: Chemical, vol. 12, pp. 213-220, 1993.
[12] Y. Mizuno, N. Hayashi, H. Tanaka, Y. Wada, and K. Nakamura, “Brillouin scattering in multicore optical fibers for sensing applications,” Scientific Reports, vol. 5, pp. 1-9, 2015.
[13] X. Yang, A. S. P. Chang, B. Chen, C. Gu, and T. C. Bond, “High sensitivity gas sensing by Raman spectroscopy in photonic crystal fiber,” Sensors and Actuators B: Chemical, vol. 176, pp. 64-68, 2013.
[14] C. L. Zhao, L. M. Xiao, J. Ju, M. S. Demokan, and W. Jin, “Strain and temperature characteristics of a long-period grating written in a photonic crystal fiber and its application as a temperature-insensitive strain sensor,” Journal of Lightwave Technology, vol. 26, pp. 220-227, 2008.
[15] J. Villatoro, V. Finazzi, V. P. Minkovich, V. Pruneri, and G. Badenes, “Temperature-insensitive photonic crystal fiber interferometer for absolute strain sensing,” Applied Physics Letters, vol. 91, pp. 91109(1)-91109(3), 2007.
[16] K. T. V. Grattan and B. T. Meggitt, Optical fiber sensor technology : fundamentals, 1 ed. Boston: Kluwer Academic, 1995.
[17] E. Hecht, Optics, 4 ed. New York: Addison-Wesley, 2001.
[18] Z. B. Tian, S. S. H. Yam, and H. P. Loock, “Single-mode fiber refractive index sensor based on core-offset attenuators,” IEEE Photonics Technology Letters, vol. 20, pp. 1387-1389, 2008.
[19] Z. B. Tian, S. S. H. Yam, and H. P. Loock, “Refractive index sensor based on an abrupt taper Michelson interferometer in a single-mode fiber,” Optics Letters, vol. 33, pp. 1105-1107, 2008.
[20] P. B. Hu, X. Y. Dong, K. Ni, L. H. Chen, W. C. Wong, and C. C. Chan, “Sensitivity-enhanced Michelson interferometric humidity sensor with waist-enlarged fiber bitaper,” Sensors and Actuators B-Chemical, vol. 194, pp. 180-184, 2014.
[21] Q. Z. Rong, X. G. Qiao, Y. Y. Du, H. Sun, D. Y. Feng, R. H. Wang, M. L. Hu, and Z. Y. Feng, “In-fiber quasi-Michelson interferometer for liquid level measurement with a core-cladding-modes fiber end-face mirror,” Optics and Lasers in Engineering, vol. 57, pp. 53-57, 2014.
[22] A. Zhou, Y. H. Zhang, G. P. Li, J. Yang, Y. Z. Wang, F. J. Tian, and L. B. Yuan, “Optical refractometer based on an asymmetrical twin-core fiber Michelson interferometer,” Optics Letters, vol. 36, pp. 3221-3223, 2011.
[23] Z. B. Tian, S. S. H. Yam, J. Barnes, W. Bock, P. Greig, J. M. Fraser, H. P. Loock, and R. D. Oleschuk, “Refractive index sensing with Mach-Zehnder interferometer based on concatenating two single-mode fiber tapers,” IEEE Photonics Technology Letters, vol. 20, pp. 626-628, 2008.
[24] H. Y. Choi, M. J. Kim, and B. H. Lee, “All-fiber Mach-Zehnder type interferometers formed in photonic crystal fiber,” Optics Express, vol. 15, pp. 5711-5720, 2007.
[25] L. Jiang, J. Yang, S. Wang, B. Li, and M. Wang, “Fiber Mach-Zehnder interferometer based on microcavities for high-temperature sensing with high sensitivity,” Optics Letters, vol. 36, pp. 3753-3755, 2011.
[26] J. R. Zheng, P. G. Yan, Y. Q. Yu, Z. L. Ou, J. S. Wang, X. Chen, and C. L. Du, “Temperature and index insensitive strain sensor based on a photonic crystal fiber in line Mach-Zehnder interferometer,” Optics Communications, vol. 297, pp. 7-11, 2013.
[27] Y. F. Geng, X. J. Li, X. L. Tan, Y. L. Deng, and Y. Q. Yu, “High-sensitivity Mach-Zehnder interferometric temperature fiber sensor based on a waist-enlarged fusion bitaper,” IEEE Sensors Journal, vol. 11, pp. 2891-2894, 2011.
[28] L. M. Hu, C. C. Chan, X. Y. Dong, Y. P. Wang, P. Zu, W. C. Wong, W. W. Qian, and T. Li, “Photonic crystal fiber strain sensor based on modified Mach-Zehnder interferometer,” IEEE Photonics Journal, vol. 4, pp. 114-118, 2012.
[29] M. Deng, C. P. Tang, T. Zhu, and Y. J. Rao, “Highly sensitive bend sensor based on Mach-Zehnder interferometer using photonic crystal fiber,” Optics Communications, vol. 284, pp. 2849-2853, 2011.
[30] D. Wu, T. Zhu, M. Deng, D. W. Duan, L. L. Shi, J. Yao, and Y. J. Rao, “Refractive index sensing based on Mach-Zehnder interferometer formed by three cascaded single-mode fiber tapers,” Applied Optics, vol. 50, pp. 1548-1553, 2011.
[31] M. Shao, X. G. Qiao, H. W. Fu, N. Zhao, Q. P. Liu, and H. Gao, “An in-fiber Mach-Zehnder interferometer based on arc-induced tapers for high sensitivity humidity sensing,” IEEE Sensors Journal, vol. 13, pp. 2026-2031, 2013.
[32] X. Y. Dong, H. Y. Tam, and P. Shum, “Temperature-insensitive strain sensor with polarization-maintaining photonic crystal fiber based Sagnac interferometer,” Applied Physics Letters, vol. 90, pp. 151113(1)-151113(3), 2007.
[33] H. P. Gong, C. C. Chan, L. H. Chen, and X. Y. Dong, “Strain sensor realized by using low-birefringence photonic-crystal-fiber-based Sagnac loop,” IEEE Photonics Technology Letters, vol. 22, pp. 1238-1240, 2010.
[34] J. M. Estudillo-Ayala, J. Ruiz-Pinales, R. Rojas-Laguna, J. A. Andrade-Lucio, O. G. Ibarra-Manzano, E. Alvarado-Mendez, M. Torres-Cisneros, B. Ibarra-Escamilla, and E. A. Kuzin, “Analysis of a Sagnac interferometer with low-birefringence twisted fiber,” Optics and Lasers in Engineering, vol. 39, pp. 635-643, 2003.
[35] T. Wei, Y. K. Han, Y. J. Li, H. L. Tsai, and H. Xiao, “Temperature-insensitive miniaturized fiber inline Fabry-Pérot interferometer for highly sensitive refractive index measurement,” Optics Express, vol. 16, pp. 5764-5769, 2008.
[36] Y. J. Rao, “Recent progress in fiber-optic extrinsic Fabry-Pérot interferometric sensors,” Optical Fiber Technology, vol. 12, pp. 227-237, 2006.
[37] F. Xu, D. X. Ren, X. L. Shi, C. Li, W. W. Lu, L. Lu, and B. L. Yu, “High-sensitivity Fabry-Pérot interferometric pressure sensor based on a nanothick silver diaphragm,” Optics Letters, vol. 37, pp. 133-135, 2012.
[38] M. Born and E. Wolf, Principles of optics, 7 ed. London: Cambridge Universuty, 1999.
[39] J. F. Mulligan, “Who were Fabry and Pérot?,” American Journal of Physics, vol. 66, pp. 797-802, 1998.
[40] Z. L. Ran, Y. J. Rao, W. J. Liu, X. Liao, and K. S. Chiang, “Laser-micromachined Fabry-Pérot optical fiber tip sensor for high-resolution temperature-independent measurement of refractive index,” Optics Express, vol. 16, pp. 2252-2263, 2008.
[41] J. Sirkis, T. A. Berkoff, R. T. Jones, H. Singh, A. D. Kersey, E. J. Friebele, and M. A. Putnam, “In-line fiber etalon fiberoptic strain sensors,” Journal of Lightwave Technology, vol. 13, pp. 1256-1263, 1995.
[42] V. R. Machavaram, R. A. Badcock, and G. F. Fernando, “Fabrication of intrinsic fibre Fabry-Pérot sensors in silica fibres using hydrofluoric acid etching,” Sensors and Actuators A-Physical, vol. 138, pp. 248-260, 2007.
[43] D. J. Monk, D. S. Soane, and R. T. Howe, “A review of the chemical-reaction mechanism and kinetics for hydrofluoric-acid etching of silicon dioxide for surface micromaching applications,” Thin Solid Films, vol. 232, pp. 1-12, 1993.
[44] R. Kashap, Fiber Bragg Gratings, 2 ed. Burlington: Academic Press, 2010.
[45] G. Meltz and W.W. Morey, “Bragg grating formation and germanosilicate fiber photosensitivity,” International Workshop on Photoinduced Self-Organization Effects in Optical Fiber, vol. 1516, pp. 185-199, 1991.
[46] C. Y. Lin, L. A. Wang, and G. W. Chern, “Corrugated long-period fiber gratings as strain, torsion, and bending sensors,” Journal of Lightwave Technology, vol. 19, pp. 1159-1168, 2001.
[47] W. M. B. Yunus and A. B. Rahman, “Refractive index of solutions at high-concentrations,” Applied Optics, vol. 27, pp. 3341-3343, 1988.
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:自定論文開放時間 user define
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus: 已公開 available


紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code