Responsive image
博碩士論文 etd-0628116-141910 詳細資訊
Title page for etd-0628116-141910
論文名稱
Title
液相層析儀結合感應耦合電漿質譜儀於魚油樣品及菇類樣品中汞物種分析之應用
Determination of mercury species in fish oil samples and mushroom samples by HPLC-ICP-MS
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
101
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2016-07-21
繳交日期
Date of Submission
2016-07-28
關鍵字
Keywords
魚油、汞物種、物種分析、菇類樣品、液相層析、感應耦合電漿質譜儀
Mushroom, Fish oil, HPLC-ICP-MS, Mercury, Speciation
統計
Statistics
本論文已被瀏覽 5688 次,被下載 51
The thesis/dissertation has been browsed 5688 times, has been downloaded 51 times.
中文摘要
第一部分研究:利用離子對逆向層析法(Ion-pair reversed-phase chromatography)結合感應耦合電漿質譜儀(Inductively coupled plasma mass spectroscopy)對魚油中之汞物種進行分析。以4.6 mm × 33 mm的C8逆相層析管柱,搭配2-巰基乙醇(2-mercaptoethanol)作為離子對試劑以及甲醇,以等位沖提方式針對無機汞、甲基汞及乙基汞等三種汞物種進行分離。在最適化條件下,三種汞物種可在6.5分鐘內完成分離,偵測極限個別為0.013、0.014與0.026 ng mL-1,訊號再現性之RSD小於2%。進行魚油樣品分析時,則在動相溶液(0.6% v/v 2-mercaptoethanol、2.5% v/v MeOH)中添加1% m/v Lipase、2% v/v Triton X-100以及1% v/v HNO3作為萃取試劑,並搭配微波輔助萃取的方式,於60℃ 下萃取魚油樣品5分鐘,萃取效率可達91%以上。最後將本方法應用於魚油樣品之汞物種分析。市售魚油樣品主要含無機汞與甲基汞兩種汞物種,汞物種的濃度分布情形隨魚油廠牌之不同而有所差異;儘管目前尚未有任何國家的衛生機構對魚油中的汞物種濃度制定規範,但是若以世界衛生組織(WHO)對魚肉中的甲基汞濃度規範而言,相較之下是低出許多的。
第二部分研究:利用離子對逆向層析結合冷蒸氣生成技術( cold vapor generation )結合ICP-MS對食用菇類樣品中之汞物種進行分析。冷蒸氣生成技術的使用可大幅提升汞物種的訊號靈敏度,並藉由相同的離子對試劑與甲醇之調控,以等位沖提方式將甲基汞及無機汞兩種汞物種進行分離。在最適化條件下,兩種汞物種可在6分鐘內完成分離,偵測極限分別為0.011與0.029 ng mL-1,訊號再現性之RSD小於3.5%。直接使用動相溶液(0.6% v/v 2-mercaptoethanol,6% v/v MeOH)對標準參考樣品NRCC DOLT-3以及市售菇類樣品進行方法準確度之驗證及分析。於市售菇類樣品中,無機汞為主要的汞物種,佔了汞物種濃度的八至九成,而甲基汞的濃度相較甚少。由於無機汞的毒性相較甲基汞低出許多,只要在正常攝取的情況下,可安全無虞的食用菇類。
Abstract
We have presented our research results in two parts, a first parts of research which is explained by, based on HPLC-ICP-MS for the simultaneous determination of Methyl-Hg, Hg(II) and Ethyl-Hg in fish oils. The separation was performed using ion-pair reversed-phase liquid chromatography on a C8 column with 0.6% (v/v) 2-mercaptoethanol, and 2.5% (v/v) MeOH as mobile phase using an isocratic elution. Separation of the three mercury species was carried out in less than 6.5 min. The detection limits for Methyl-Hg, Hg(II) and Ethyl-Hg were found to be 0.013, 0.014 and 0.026 ng mL-1, respectively. Reproducibility was less than 2% RSD for 5 replicate injections. Mercury species were extracted from fish oils by using an extractant, containing 0.6% (v/v) 2-mercaptoethanol, 2.5% (v/v) MeOH, 1% (m/v) lipase, 2% (m/v) Triton X-100, and 1.0% (v/v) nitric acid were also used to microwave assisted extraction procedure. The extraction efficiency of mercury achieved more than 90% at 60 oC within 5 min. The research results reveal that different mercury species were presented which depends on different brands of fish oil. However, Methyl-Hg and Hg(II) species were found in fish oil samples. Despite the fact that, there was no regulation about mercury for fish oils so far, the concentration of mercury was quiet low as compared to fish standards.
Second parts of results fully demonstrate based on HPLC-CV-ICP-MS for the simultaneous determination of Methyl-Hg and Hg(II) in edible mushroom samples. The vapor generation techniques were hyphenated liquid chromatography to enhance the sensitivity of mercury species. The separation was performed on C8 column with 0.6% (v/v) 2-mercaptoethanol, and 6.0% (v/v) MeOH as mobile phase, the separation of the mercury species was carried out in less than 6 min. The detection limits were also optimized, in Methyl-Hg and Hg(II) were found to be 0.011, and 0.029 ng mL-1, respectively. Reproducibility was less than 3.5% RSD for 5 replicate injections. Mercury species were extracted from mushroom samples using mobile phase as an extractant, containing 0.6% (v/v) 2-mercaptoethanol, and 6.0% (v/v) MeOH. The accuracy of the method was validated by using NRCC DOLT-3 Fish Liver Certified Reference. The Methodology were developed and applied to investigate mercury speciation in edible mushroom samples and results reveals that, which is predominantly presented in Hg(II) species. The concentration of Methyl-Hg was extremely low compared with Hg(II) concentrations. Finally, The developed method were optimized and applied to investigate mercury speciation in fish oils and mushroom samples.
目次 Table of Contents
論文審定書……………………………………………………………………………………i
誌謝………………………………………………………………………………………….. ii
摘要…………………………………………………………………………………………...iii
Abstract…………………………………………………………………….......................iv
目錄…………………………………………………………………….............................v
圖目錄…………………………………………………………………….........................vii
表目錄…………………………………………………………………….........................ix

第一章 液相層析儀結合感應耦合電漿質譜儀於魚油樣品中汞物種分析之應用
壹、前言……………………………………………………………………………...…1
貳、實驗部分………………………………………………………………………...…3
一、儀器裝置…………………………………………………………………......……3
二、藥品與溶液的配製………………………………………………...………...……4
三、實驗過程………………………………………………………...…………...……7
參、結果與討論………………………………………………………………..….…..10
一、液相層析分離條件的探討………………………………………....…………….10
二、ICP系統操作條件的最佳化…………………………….......…………………..20
三、汞物種的分析……………………………………………..……………..……….21
四、萃取條件……………………………………………………....………………....27
五、真實樣品分析……………………………………………………....……….......33
肆、結論……………………………………………………………………………….45
伍、參考文獻………………………………………………………………………….46

第二章 液相層析冷蒸氣生成技術結合感應耦合電漿質譜儀於菇類樣品中汞物種
    分析之應用
壹、 前言……………………………………………………………………………...51
貳、冷蒸氣形成原理……………………………………………………………….…52
參、實驗部分……………………………………………………………………….…53
一、儀器裝置……………………………………………………………………........53
二、藥品與溶液的配製...............................................................................55
三、實驗過程............................................................................................56
肆、結果與討論........................................................................................ 60
一、液相層析分離條件的探討.....................................................................60
二、冷蒸氣生成系統操作條件的最適化........................................................66
三、ICP系統操作條件的最佳化...................................................................70
四、汞物種分析.........................................................................................72
五、萃取條件............................................................................................78
六、真實樣品分析...........................................................................……....79
伍、結論........................................................................................……....86
陸、參考文獻..................................................………………………….........87
圖目錄
第一章 液相層析儀結合感應耦合電漿質譜儀於魚油樣品中汞物種分析之應用
圖1-1 HPLC-ICP-MS之系統裝置圖…………………………………………........6
圖1-2 樣品萃取流程圖………………………………………………………….….10
圖1-3 沖提液中2-mercaptoethanol濃度對汞物種滯留時間的影響…………….12
圖1-4 沖提液中2-mercaptoethanol濃度對汞物種滯留時間的影響…………….13
圖1-5 沖提液中MeOH濃度對汞物種滯留時間的影響…………………..………14
圖1-6 沖提液中MeOH濃度對汞物種滯留時間的影響…………………..………14
圖1-7 沖提液的pH值對層析分離的影響…………………………………..……..15
圖1-8 沖提液中pH值對汞物種滯留時間的影響…………………………..……..16
圖1-9 沖提液流速對汞物種滯留時間的影響………………………………….….17
圖1-10 沖提液流速對(a)汞物種滯留時間及(b)波峰積分面積之S/B的影響….…18
圖1-11 沖提液中MeOH濃度對汞物種滯留時間的影響………………………..…19
圖1-12 霧化氣體流速對汞元素分析訊號的影響………………………………….20
圖1-13 電漿輸出功率對汞元素分析訊號的影響………………………………….21
圖1-14 HPLC-ICP-MS 系統中所得到的汞物種之層析圖………………………..22
圖1-15 不同萃取方式對於魚油樣品中汞的萃取效率…………………………….27
圖1-16 於不同的萃取方法中添加0.5%硝酸對於魚油樣品中汞的萃取效率…...28
圖1-17 不同硝酸濃度對於魚油樣品中汞的萃取效率…………………………….30
圖1-18 不同硝酸濃度萃取魚油樣品中汞的物種之所得層析圖………………….31
圖1-19 溫度對於魚油樣品中汞的萃取效率……………………………………….32
圖1-20 萃取時間對於魚油樣品中汞的萃取效率………………………………….33
圖1-21 魚肝標準參考樣品(NRCC DOLT-3)萃取所得汞物種之層析圖………….34
圖1-22 美術館湖水層析圖………………………………………………………….36
圖1-23 後勁溪水層析圖…………………………………………………………….37
圖1-24 化學館飲水機飲用水層析圖……………………………………………….38
圖1-25 魚油樣品( Fish oil #1 )萃取後所得汞物種之層析圖………………..…...41
圖1-26 魚油樣品( Fish oil #2 )萃取後所得汞物種之層析圖……………..……...42
圖1-27 魚油樣品( Fish oil #3 )萃取後所得汞物種之層析圖…………..………...43

第二章 液相層析冷蒸氣生成技術結合感應耦合電漿質譜儀於菇類樣品中汞物種
    分析之應用
圖2-1 HPLC-CV-ICP-MS之系統裝置圖...............................................................54
圖2-2 標準參考樣品及真實樣品之萃取流程圖.....................................................59
圖2-3 實驗流圖...............................................................................................60
圖2-4 沖提液組成對層析分離的影響..................................................................61
圖2-5 沖提液中2-mercaptoethanol 濃度對層析分離的影響...................................63
圖2-6 沖提液中甲醇濃度對層析分離的影響........................................................64
圖2-7 沖提液流速對層析分離的影響..................................................................65
圖2-8 冷蒸氣系統中NaBH4濃度對汞物種(a)分析物波鋒面積訊號及(b)波峰高
度之S/B的影響.................................................................................................67
圖2-9 冷蒸氣系統中HNO3濃度對汞物種(a)分析物波峰面積訊號及(b)波峰高度
之S/B的影響....................................................................................................69
圖2-10 CV-ICP-MS系統中,霧化氣體流速對汞元素分析訊號的影響......................71
圖2-11 CV-ICP-MS 系統中,電漿輸出功率對汞元素分析訊號的影響.....................72
圖2-12 HPLC-CV-ICP-MS系統中所得到的汞物種之層析圖...................................75
圖2-13 萃取液中2-mercaptoethanol的濃度對萃取效率之影響...............................79
圖2-14 魚肝標準參考樣品(NRCC DOLT-3)萃取所得汞物種之層析圖......................81
圖2-15 菇類樣品( mushroom #1 )萃取後所得汞物種之層析圖...............................83
圖2-16 菇類樣品( mushroom #2 )萃取後所得汞物種之層析圖...............................84
表目錄
第一章 液相層析儀結合感應耦合電漿質譜儀於魚油樣品中汞物種分析之應用
表1-1 微波消化升溫程式…………………………………………………………...9
表1-2 微波輔助萃取升溫程式……………………………………………………...9
表1-3 汞物種分析在HPLC-ICP-MS系統的最適化條件………………………...23
表1-4 三種汞物種的滯留時間及訊號再現性…………………………………….23
表1-5 HPLC-ICP-MS測定三種汞物種之校正曲線及其偵測極限……………...24
表1-6 分離時間與偵測極限之比較…….…….…………………………………..25
表1-7 添加硝酸前後之比較……………………………………………………….29
表1-8 HPLC-ICP-MS測定魚肝標準參考樣品NRCC DOLT-3中各個汞物種之含量及回收率………………………………………………………………........................….35
表1-9 利用HPLC -ICP-MS測定水樣中汞物種之含量…………………………..39
表1-10 以HPLC-ICP-MS測定魚油樣品中之汞物種……………………………..44

第二章 液相層析冷蒸氣生成技術結合感應耦合電漿質譜儀於菇類樣品中汞物種
    分析之應用
表2-1 微波消化升程式........................................................................................59
表2-2 不同酸試劑對汞物種訊號之比較.................................................................68
表2-3 汞物種分析在HPLC-CV-ICP-MS系統的最適化條件.......................................74
表2-4 二種汞物種的滯留時間及訊號再現性...........................................................75
表2-5 HPLC-CV-ICP-MS測定二種汞物種之校正曲線及其偵測極限..........................76
表2-6 分離時間與偵測極限之比較........................................................................77
表2-7 HPLC-CV-ICP-MS測定魚肝標準參考樣品NRCC DOLT-3中各個汞物種
之含量及回收率...........................................................................................80
表2-8 以HPLC-CV-ICP-MS測定菇類樣品中之汞物種...............................................85
參考文獻 References
第一章
1. Harrington, C. F. The speciation of mercury and organomercury compounds by using high-performance liquid chromatography. TRAC-Trends Anal. Chem. 2000, 19, 167-179.
2. Nriagu, J. O. A global assessment of natural sources of atmospheric trace-metals. Nature 1989, 338, 47-49.
3. Caruso, J. A.; Klaue, B.; Michalke, B.; Rocke, D. M. Group assessment: elemental speciation. Ecotoxicol. Environ. Saf. 2003, 56, 32-44.
4. Tu, Q.; Jr, W. J.; Buckley, B. Mercury speciation analysis in soil samples by ion chromatography, post-column cold vapor generation and inductively coupled plasma mass spectrometry. J. Anal. At. Spectrom. 2003, 18, 696-701.
5. Robles, L. C.; Feo, J. C.; Aller, A. J. Selective preconcentration of phenyl-mercury by living Escherichia coli and its determination by cold vapour atomic absorption spectrometry. Anal. Chim. Acta 2000, 423, 255-263.
6. Schroeder, W. H. Developments in the speciation of mercury in natural water. Trends
Anal. Chem. 1989, 8, 339-342.
7. Harrison, R. M.; Papsomanikis, S. Environmental analysis using chromatography interfaced with atom spectroscopy. Ellis Horwood series in analytical chemistry 1989.
8. Gilmour, C. C.; Henry, E. A.; Mitchell, R. Sulfate stimulation of mercury methylation in freshwater sediments. Environ. Sci. Technol. 1992, 26, 2281-2287.
9. Wood, J. M.; Kennedy, F. S.; Rosen, C. G. Synthesis of methyl-mercury compounds by extracts of a methanogenic bacterium. Nature 1968, 220, 173.
10. Mishra, S.; Tripathi, R. M.; Bhalke, S.; Shukla, V. K.; Puranik, V. D. Determination of methylmercury and mercury (II) in a marine ecosystem using solid-phase microextraction gas chromatography-mass spectrometry. Anal. Chem. Acta 2005, 551, 192-198.
11. Zheng, C.; Li, Y.; He, Y.; Ma, Q.; Hou, X. Photo-induced chemical vapor generation with formic acid for ultrasensitive atomic fluorescence spectrometric determination of mercury: potential application to mercury speciation in water. J. Anal. Atom. Spec. 2005, 20, 746-750.
12. Sanchez Uria, J. E.; Sanz-Medel, A. Inorganic and methylmercury speciation in environmental samples. Talanta 1998, 47, 509-524.
13. Vallant, B.; Kadnar, R.; Goessler, W. Development of a new HPLC method for the determination of inorganic and methylmercury in biological samples with ICP-MS detection. J. Anal. Atom. Spec. 2007, 22, 322-325.
14. Houserova, P.; Matejicek, D.; Kuban, V.; Pavlickova, J.; Komarek, J. Liquid chromatographic-cold vapour atomic fluorescence spectrometric determination of mercury species. J. Sep. Sci. 2006, 29, 248-255.
15. Gill, U.; Bigras, L.; Schwartz, H. Routine, automated determination of inorganic and total mercury in multimedia using cold vapor atomic absorption spectrometry. Chemosphere 2004, 56, 1097-1103.
16. Kato, T.; Uehiro, T.; Yasuara, A.; Moriya, M. Determination of methylmercury species by capillary column gas-chromatography with axially viewed inductively coupled plasma atomic emission spectrometric detection. J. Anal. Atom. Spec. 1992, 7, 15-18.
17. Castillo, A.; Roig-Navarro, A. F.; Pozo, O. J. Method optimization for the determination of four mercury species by micro-liquid chromatography-inductively coupled plasma mass spectrometry coupling in environmental water samples. Anal. Chim. Acta 2006, 577, 18-25.
18. Wang, M.; Feng, W.; Shi, J.; Zhang, F.; Wang, B.; Zhu, M.; Li, B.; Zhao, Y.; Chai, Z. Development of a mild mercaptoethanol extraction method for determination of mercury species in biological samples by HPLC-ICP-MS. Talanta 2007, 71, 2034-2039.
19. Shum, S. C. K.; Pang, H. M.; Houk, R. S. Speciation of mercury and lead compounds by microbore column liquid-chromatography inductively coupled plasma mass-spectrometry with direct injection nebulization. Anal. Chem. 1992, 64, 2444-2450.
20. Schickling, C.; Broekaert, J. A. C. Determination of mercury species in gascondensates by on-line coupled high-performance liquid chromatography and cold-vapor atomic absorption spectrometry. Appl. Organ. Chem. 1995, 9, 29-36.
21. Fabbri, D.; Lombardo, M.; Trombini, C.; Vassura, I. A new procedure for the speciation of mercury in water based on the transformation of mercury (II) and methylmercury (II) into stable acetylides followed by HPLC analysis. Appl. Organ. Chem. 1995, 9, 713-718.
22. Parke, J. L.; Blood, N. S. Preservation and storage techniques for low-level aqueous mercury speciation. Sci. Total Environ. 2005, 337, 253–263.
23. Chiou, C. S.; Jiang, S. J.; Danadurai, K. S. K. Determination of mercury compounds in fish by microwave-assisted extraction and liquid chromatography-vapor generation-inductively coupled plasma mass spectrometry. Spec. Acta. Part. B. 2001, 56, 1133-1142.
24. Hwang, C. J.; Jiang S. J. Determination of arsenic compounds in water samples by liquid-chromatography inductively-coupled plasma-mass spectrometry with an in-situ nebulizer-hydride generator. Anal. Chim. Acta 1994, 289, 205-213.
25. Lin, L. Y.; Chang, L. F.; Jiang, S. J. Speciation Analysis of mercury in cereals by liquid chromatography chemical vapor generation inductively coupled plasma mass spectrometry. J. Agric. Food Chem. 2008, 56, 6868–6872.
26. Chang, L. F.; Jiang, S. J.; Sahayam, A. C. Speciation analysis of mercury and lead in fish samples using liquid chromatography-inductively coupled plasma mass spectrometry. J. Chrom. A. 2007, 1176, 143–148.
27. Yun, Z.; He, B.; Wang, Z.; Wang, T.; Jiang, G. Evaluation of different extraction procedure for determination of organic mercury species in petroleum by high performance liquid chromatography coupled with cold vapor atomic fluorescence spectrometry. Talanta 2013, 106, 60–65.
28. Bouchet, S.; Björn, E. Analytical developments for the determination of monomethylmercury complexes with low molecular mass thiols by reverse phase liquid chromatography hyphenated to inductively coupled plasma mass spectrometry. J. Chromatogr. A. 2014, 1339, 50–58.
29. Döker, S.; Bosegelmz, i. i. Rapid extraction and reverse phase-liquid chromatographic separation of mercury(II) and methylmercury in fish samples with inductively coupled plasma mass spectrometric detection applying oxygen addition into plasma. Food Chem. 2015, 184,147–153.
30. Sannac, S.; Chen, Y. H.; Wahlen, R.; Curdy, E. M. Benefits of HPLC-ICP-MS coupling for mercury speciation in food. Agilent Technologies 2012.
31. Wan, C. C.; Chen, C. S.; Jiang, S. J. Determination of mercury compounds in water samples by liquid chromatography inductively coupled plasma mass spectrometry with an in situ nebulizer/vapor generator. J. Anal. Atom. Spec. 1997, 12, 683-687.
32. Aizpun, B.; Fernander, M. L.; Blanco, E.; Sanz-Medel. A. Speciation of inorganic mercury(II) and methylmercury by vesicle-mediated high-performance liquid chromatography coupled to cold vapour atomic absorption spectrometry. J. Anal. At. Spectrom. 1994, 9, 1279.
33. Castillo, A.; Roig-Navarro, A. F.; Pozo, O. J. Method optimization for the determination of four mercury species by micro-liquid chromatography-inductively coupled plasma mass spectrometry coupling in environmental water samples. Anal. Chim. Acta 2006, 577, 18–25.
34. Wang, M.; Feng, W. Y.; Shi, J. W.; Zhang, F.; Wang, B.; Zhu, M. T.; Li, B.; Zhao, Y. L.; Chai, Z. F. Development of a mild mercaptoethanol extraction method for determination of mercury species in biological samples by HPLC-ICP-MS. Talanta 2007, 71, 2034–2039.
35. Shum, S. C. K.; Pang, H. M.; Houk, R. S. Speciation of mercury and lead compounds by microbore column liquid-chromatography inductively coupled plasma mass-spectrometry with direct injection nebulization. Anal. Chem. 1992, 64, 2444–2450.
36. Houserova, P.; Matejicek, D.; Kuban, V.; Pavlickova, J.; Komarek, J. Liquid chromatography-cold vapor atomic fluorescence spectrometric determination of mercury species. J. Sep. Sci. 2006, 29, 248–255.
37. Costa-Fernandez, J. M.; Lunzer, F.; Pereiro-Garcia, F.; Sanz-Medel, A.; Bordel-Garcia, N. Direct coupling of high-performance liquid-chromatography to microwave-induced plasma-atomic emission-spectrometry via volatile-species generation and its application to mercury and arsenic speciation. J. Anal. Atom. Spec. 1995, 10, 1019–1025.
38. Yin, Y.; Li, J.; He, B.; Shi, J.; Jiang, G. Simple interface of high-performance liquid chromatography atomic fluorescence spectrometry hyphenated system for speciation of mercury based on photo-induced chemical vapour generation with formic acid in mobile phase as reaction reagent. J. Chromatogr. A. 2008, 1181, 77–82.
39. Hight, S. C.; Cheng, J. Determination of methylmercury and estimation of total mercury in seafood using high performance liquid chromatography (HPLC) and inductively coupled plasma-mass spectrometry (ICP-MS): Method development and validation. Anal. Chim. Acta 2006, 567, 160–172.
40. Kara, D.; Fisher, A.; Hill, S. Detergentless ultrasound- assisted extraction of trace elements from edible oils using lipase as an extractant. Talanta 2015, 144, 219–255.
41. Robaina, N. F.; Brum, D. M.; Cassella, R. J. Application of the extraction induced by emulsion breaking for the determination of chromium and manganese in edible oils by electrothermal atomic absorption spectrometry. Talanta 2012, 99, 104–112.
42. Cassella, R. J.; Brum, D. M.; Paula, C. E. R.; Lima, C. F. Extraction induced by emulsion breaking: a novel strategy for the trace metals determination in diesel oil samples by electrothermal atomic absorption spectrometry. J. Anal. Atom. Spec. 2010, 25, 1704–1711.
43. He, Y. M.; Chen, J. J.; Zhou, Y.; Wang, X. J.; Liu, X. Y. Extraction induced by emulsion breaking for trace multi-element determination in edible vegetable oils by ICP-MS. Anal. Methods 2014, 6, 5105–5111.
44. Pehlivan, E.; Arslan, G.; Gode, F.; Altun, T.; Özcan, M. M. Determination of some inorganic metals in edible vegetable oils by inductively coupled plasma atomic emission spectroscopy (ICP-AES). Grasas. Y. Aceites. 2008, 59, 239–244.
45. 行政院環境保護署“飲用水水質標準”,民國103年1月
46. Joint FAO/WHO expert consultation on the risks and benefits of fish consumption. Food and Agri. Organization of the United Nations 2010.
47. 行政院衛生福利部食品藥物管理署“水產動物類衛生標準”,民國103年10月
第二章
1. Driscoll, C. T.; Mason, R. P.; Chan, H. M.; Jacob, D. J.; Pirrone, N. Mercury as a global pollutant: Sources, pathways, and effects. Environ. Sci. Technol. 2013, 47, 4967–4983.
2. Ralston, N. V. C.; Raymond, L. J. Dietary selenium's protective effects against methylmercury toxicity. Toxicology 2010, 278, 112–123.
3. FAO/WHO Expert Committee on Food Additives, Evaluation of certain food additives and contaminants, Seventy-second report of the Joint FAO/WHO Expert Committee on Food Additives. WHO Technical Report Series 959, 2010.
4. European Food Safety Authority (EFSA), EFSA J. 2012, 10(12), 2985.
5. de la Guardia, M.; Garrigues, S. Handbook of mineral elements in food. Wiley Online Library, 2015.
6. Fernandes, Â.; Barreira, J. C. M.; Antonio, A. L.; Morales, P.; F´ernandez-Ruiz, V.; Martins, A. M.; Oliveira, B. P. P.; Ferreira, I. C. F. R. Exquisite wild mushrooms as a source of dietary fiber: Analysis in electron-beam irradiated samples. LWT–Food Sci. Technol. 2015, 60, 855–859.
7. Heleno, S. A.; Barros, L.; Martins, A.; Morales, P.; Fern´andez- Ruiz, V.; Glamoclija, J.; Sokovic, M.; Ferreira, I. C. F. R. Nutritional value, bioactive compounds, antimicrobial activity and bioaccessibility studies with wild edible mushrooms. LWT–Food Sci. Technol. 2015, 63, 799–806.
8. Kalač, P. A review of chemical composition and nutritional value of wild-growing and cultivated mushrooms. J. Sci. Food Agric. 2013, 93, 209–218.
9. Wang, X.; Zhang, J.; Wu, L.; Zhao, Y.; Li, T.; Li, J.; Wang, Y.; Liu, H. A mini-review of chemical composition and nutritional value of edible wild-grown mushroom from China. Food Chem. 2014, 151, 279–285.
10. Zicari, G.; Rivetti, D.; Soardo, V.; Cerrato, E.; Panata, M. Edible mushrooms and chemical risk. Prog. Nutr. 2012, 14, 100–107.
11. Fang, Y.; Sun, X.; Yang, W.; Ma, N.; Xin, Z.; Fu, J.; Liu, X.; Liu, M.; Mariga, A. M.; Zhu, X.; Hu, Q. Concentrations and health risks of lead, cadmium, arsenic, and mercury in rice and edible mushrooms in China. Food Chem. 2014, 147, 147–151.
12. Falandysz , J.; Drewnowska, M. Distribution of mercury in Amanita fulva (Schaeff.) Secr. mushrooms: Accumulation, loss in cooking and dietary intake. Ecotoxicol. Environ. Saf. 2015, 115, 49–54.
13. Jarzy´nska, G.; Chojnacka, A.; Dryzalowska, A.; Nnorom, I. C.; Falandysz, J. Concentrations and bioconcentration factors of minerals in yellow-cracking Bolete (Xerocomus subtomentosus) mushroom collected in Noteć Forest, Poland. J. Food Sci. 2012, 77, H202–H206.
14. Kalač, P. Trace element contents in European species of wild growing edible mushrooms: A review for the period 2000–2009. Food Chem. 2010, 122, 2–15
15. Ostos, C.; Pérez-Rodríguez, F.; Arroyo, B. M.; Moreno-Rojas, R. Study of mercury content in wild edible mushrooms and its contribution to the Provisional Tolerable Weekly Intake in Spain. J. Food Compos. Anal. 2015, 37, 136–142.
16. Falandysz, J.; Zhang, J.; Wang, Y.; Saba, M.; Krasińska, G.; Wiejak, A.; Li, T. PLoS One. 2015, 10, 1–19.
17. Stegnar, P.; Kosta, L.; Byrne, A. R.; Ravnik, V. The accumulation of mercury by, and the occurrence of methyl mercury in, some fungi. Chemosphere 1973, 2, 57–63.
18. Stijve, T.; Roschnik, R.;. Tamura, R.; Oshina, T. Mitteilungen Aus Dem Gebiete Der Lebensmittel-Untersuchung Un Hygiene, Mercury and methyl mercury content of different species of fungi. 1974, 65, 209–220.
19. Minagawa, K.; Sasaki, T.; Takizawa, Y. Accumulation route and chemical form of mercury in mushroom species. Bull. Environ. Contam. Toxicol. 1980, 25, 382–388.
20. Bargagli, R.; Baldi, F. Mercury and methyl mercury in higher fungi and their relation with the substrata in a cinnabar mining area. Chemosphere 1984, 13, 1059–1071.
21. Fischer, R. G.; Rapsomanikis, S.; Andreae, M. O.; Baldi, F. Bioaccumulation of methylmercury and transformation of inorganic mercury by macrofungi. Environ. Sci. Technol. 1995, 29, 993–999.
22. Wuilloud, R. G.; Kannamkumarath, S. S.; Caruso, J. A. Speciation of essential and toxic elements in edible mushrooms: size-exclusion chromatography separation with on-line UV–inductively coupled plasma mass spectrometry detection. Appl. Organomet. Chem. 2004, 18, 156–165.
23. Rieder, S. R.; Brunner, I.; Horvat, M.; Jacobs, A.; Frey, B. Accumulation of mercury and methylmercury by mushrooms and earthworms from forest soils. Environ. Pollut. 2011, 159, 2861–2869.
24. Pilz, C.; Antes, F. G.; Moreira, C. M.; de Azevedo Mello, P.; Duarte, F. A.; Pozebon, D. de Moraes Flores, É. M.; Dressler, V. L. Determination of Hg species in edible mushrooms using reversed phase-liquid chromatography-chemical vapor generation-inductively coupled plasma mass spectrometry. J. Anal. Chem. 2011, 1, 228–233.
25. Costa-Fernandez, J. M.; Lunzer, F.; Pereiro-Garcia, F.; Sanz-Medel, A.; Bordel-Garcia, N. Direct coupling of high-performance liquid-chromatography to microwave-induced plasma-atomic emission-spectrometry via volatile-species generation and its application to mercury and arsenic speciation. J. Anal. At. Spectrom. 1995, 10, 1019–1025.
26. Wan, C. C.; Chen, C. S.; Jiang, S. J. Determination of mercury compounds in water samples by liquid chromatography inductively coupled plasma mass spectrometry with an in situ nebulizer/vapor generator. J. Anal. At. Spectrom. 1997, 12, 683–687.
27. Chiou, C. S.; Jian, S. J.; Danadurai, K. S. K. Determination of mercury compounds in fish by microwave-assisted extraction and liquid chromatography-vapor generation-inductively coupled plasma mass spectrometry. Spectrochim. Acta Part B 2001, 56, 1133–1142.
28. Wang, M.; Feng, W.; Shi, J.; Zhang, F.; Wang, B.; Zhu, M.; Li, B.; Zhao, Y.; Chai, Z. Development of a mild mercaptoethanol extraction method for determination of mercury species in biological samples by HPLC-ICP-MS. Talanta 2007, 71, 2034
29. Vallant, B.; Kadnar, R.; Goessler, W. Development of a new HPLC method for the determination of inorganic and methylmercury in biological samples with ICP-MS detection. J. Anal. Atom. Spec. 2007, 22, 322-325.
30. Hwang, C. J.; Jiang, S. J. Determination of arsenic compounds in water samples by liquid-chromatography inductively-coupled plasma-mass spectrometry with an in-situ nebulizer-hydride generator. Anal. Chim. Acta 1994, 289, 205–213
31. Huang, M. F.; Jiang, S. J.; Hwang, C. J. Determination of arsenic in environmental and biological samples by flaw injection inductively-coupled plasma-mass spectrometry. J. Anal. At. Spectrom. 1995, 10, 31–35.
32. Hatch, W. R.; Ott, W. L. Determination of submicrogram quantities of mercury by atomic absorption spectrophotometry. Anal. Chem. 1968, 40, 2085–2087
33. Lin, L. Y.; Chang, L. F.; Jiang, S. J. Speciation Analysis of mercury in cereals by liquid chromatography chemical vapor generation inductively coupled plasma mass spectrometry. J. Agric. Food Chem. 2008, 56, 6868–6872.
34. Chang, L. F.; Jiang, S. J.; Sahayam, A. C. Speciation analysis of mercury and lead in fish samples using liquid chromatography-inductively coupled plasma mass spectrometry. J. Chromatogr. A. 2007, 1176, 143–148.
35. Aizpun, B.; Fernander, M. L.; Blanco, E.; Sanz-Medel, A. Speciation of inorganic mercury(II) and methylmercury by vesicle-mediated high-performance liquid chromatography coupled to cold vapour atomic absorption spectrometry. J. Anal. At. Spectrom. 1994, 9, 1279-1284
36. Döker, S.; Bosegelmz, i. i. Rapid extraction and reverse phase-liquid chromatographic separation of mercury(II) and methylmercury in fish samples with inductively coupled plasma mass spectrometric detection applying oxygen addition into plasma. Food Chem. 2015, 184,147–153.
37. Bouchet, S.; Björn, E. Analytical developments for the determination of monomethylmercury complexes with low molecular mass thiols by reverse phase liquid chromatography hyphenated to inductively coupled plasma mass spectrometry. J. Chromatogr. A. 2014, 1339, 50–58.

38. Houserova, P.; Matejicek, D.; Kuban, V.; Pavlickova, J.; Komarek, J. Liquid chromatography-cold vapor atomic fluorescence spectrometric determination of mercury species. J. Sep. Sci. 2006, 29, 248–255.
39. Yin, Y.; Li, J.; He, B.; Shi, J.; Jiang, G. Simple interface of high-performance liquid chromatography atomic fluorescence spectrometry hyphenated system for speciation of mercury based on photo-induced chemical vapour generation with formic acid in mobile phase as reaction reagent. J. Chromatogr. A. 2008, 1181, 77–82.
40. Castillo, A.; Roig-Navarro, A. F.; Pozo, O. J. Method optimization for the determination of four mercury species by micro-liquid chromatography-inductively coupled plasma mass spectrometry coupling in environmental water samples. Anal. Chim. Acta 2006, 577, 18–25.
41. Shum, S. C. K.; Pang, H. M.; Houk, R. S. Speciation of mercury and lead compounds by microbore column liquid-chromatography inductively coupled plasma mass-spectrometry with direct injection nebulization. Anal. Chem. 1992, 64, 2444–2450.
42. Ruiz-de-Cenzano, M.; López-Salazar, O.; Cervera, M. L.; de la Guardia, M. Non-chromatographic speciation of mercury in mushrooms. Anal. Methods 2016, 8, 1774–1779
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:自定論文開放時間 user define
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus: 已公開 available


紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code