Responsive image
博碩士論文 etd-0628116-143956 詳細資訊
Title page for etd-0628116-143956
論文名稱
Title
氮化硼電阻式記憶體特性與成形機制之研究
Study on characteristics and forming process of BNOx resistance random access memory
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
103
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2016-07-21
繳交日期
Date of Submission
2016-08-08
關鍵字
Keywords
電阻式記憶體、Forming過程、氮化硼、鍊鎖效應、Endurance
RRAM,forming process,boron nitride,ripple effect、endurance
統計
Statistics
本論文已被瀏覽 5655 次,被下載 45
The thesis/dissertation has been browsed 5655 times, has been downloaded 45 times.
中文摘要
在資訊爆炸的時代中,人們對於記憶體在資料存取的速度及容量上有更高的需求,再加上當元件不斷微縮的情況下,使得目前較常使用的記憶體開始漸漸進入物理上的極限,因此不論是學術界或工業界都開始尋找下一世代的記憶體。
在眾多的次世代記憶體當中電阻式記憶體(resistance random access memory)是目前最具潛力可成為下一世代的記憶體,由於此記憶體為非揮發式記憶體、操作速度快、低功耗、記憶能力保持度佳(Retention)、製程與CMOS 相容性高、以及所佔據面積小等優點。
在RRAM的操作機制中,Forming是釐清一個未知的元件非常重要之研究,從本實驗團隊之研究結果中得知Forming過程的軟崩潰對於RRAM之電阻切換層是不可或缺的機制,並且從本實驗團隊先前之實驗結果得知RRAM的Forming過程與氧離子之鍊鎖效應有關,再加上藉由本實驗團隊所歸納出的結論可得知硼、碳、氮等元素是可以有效地將氧離子減速之元素,雖然已釐清RRAM Forming過程的物理機制,但截至目前為止仍然無法有效的控制RRAM在Forming過程當中薄膜崩潰的情形,因此本實驗利用先前所得出的兩大結論分別為以Forming為氧離子的鍊鎖效應以及硼、碳、氮等元素是可有效地將氧離子減速之元素這兩大結果,設計出RRAM的電阻切換層使用BNOx做為此層之材料,並且利用濺鍍機製作元件,並使用不同的材料分析儀器分析此元件之薄膜內部的情形,接著利用半導體電性量測平台搭配多元的實驗手法來加以證明BNOx元件是可以有效的抑制鍊鎖效應之情形。
由先前的實驗結果證實BNOx元件是可有效的抑制鍊鎖效應後,緊接著針對Endurance的部分來加以琢磨,而從文獻中可得知BN為low K材料,因此BN擁有將電場集中的效果,所以本實驗將BN摻入SiO2中並與HfO2互相堆疊的方式來達到實驗的目的。
Abstract
In the age of information explosion, people demand high speed and capacity memory. In addition, due to the limitation of memory device, either academia or industry has begun to find the next generation of memory.
Among many possible candidates, the resistance random access memory (RRAM) is considered the most promising one which has advantages of its non-volatility, high operation speed, low power consumption, high retention capability, high device density, and flexibility to be integrated into CMOS fabrication process.
In operating mechanism of RRAM, forming is still an unknown and crucial process. In addition, the forming process is indispensable to soft-break and triggers the resistance switching. Based on our previous research, the process of forming has high relation to the knock-on effects of the oxygen ions. Therefore, we conclude that the boron (B), carbon (C), nitrogen (N) and other elements can be effectively decelerated oxygen ions during forming process. Even though people have investigated the physical mechanism of forming process, the forming results still cannot be control effectively. In this research, we apply the BNOx material as the insulator in RRAM. Electrical measurement and material analysis have been conducted to further confirm the result.
Experimental results show that the forming process of this BNOx-based RRAM can be effectively controlled. A high endurance capability RRAM is thus fabricated by inserting a BN layer, a low-permittivity material, to further concentrate the electrical field to increase device performance.
目次 Table of Contents
致謝 iii
中文摘要 v
Abstract vi
目錄 v
圖目錄 viii
表目錄 xiii
第一章 序論 1
1-1 前言 1
1-2 研究目的與動機 2
第二章 文獻回顧 3
2-1 記憶體發展及簡介 3
2-1-1 鐵電式記憶體(FeRAM) 4
2-1-2 磁阻式記憶體(MRAM) 5
2-1-3 相變化記憶體(PCRAM) 6
2-1-4 電阻式記憶體(RRAM) 7
2-2 電阻式記憶體切換機制 9
2-2-1 阻絲理論(Filament theory) 9
2-2-2 工作原理及可靠度參數說明 10
2-3 絕緣體載子傳導機制 12
2-3-1 歐姆傳導(Ohmic Conduction) 13
2-3-2 蕭基特發射(Schottky emission) 14
2-3-3 普爾-法蘭克發射( Poole-Frenkel emission) 16
2-3-4 跳躍傳導(Hopping) 17
2-3-5 穿隧(Tunneling) 18
第三章 實驗設備與原理 19
3-1 多靶磁控濺鍍系統( Multi-Target Sputter) 19
3-2 N&K薄膜特性分析儀(N & K analyzer) 20
3-3 傅立葉轉換紅外光譜儀 (Fourier-Transform Infrared Spectrometer) 21
3-4 X光光電子能譜儀(X-ray Photoelectron Spectroscopy) 23
3-5 電性量測系統 24
第四章 氮化硼電阻式記憶體元件製備與材料分析 27
4-1 氮化硼薄膜電阻式記憶體製備流程 27
4-1-1 氮化鈦下電極製備 28
4-1-2 氮化硼薄膜製備 29
4-1-3 白金上電極製備 30
4-2 氮化硼薄膜材料分析 31
4-2-1 FTIR化學定性分析 31
4-2-2 XPS化學定量分析 32
第五章 氮化硼薄膜元件基本特性機制之研究 34
5-1 氮化硼薄膜元件電性及基本特性 34
5-1-1 氮化硼薄膜元件量測特性 34
5-1-2 氮化硼薄膜元件絕緣層載子傳導機制擬合 38
5-1-3 氮化硼薄膜元件可靠度測試 40
5-2 氮化硼薄膜元件物理機制模型 44
第六章 氮化硼薄膜成形機制之研究 46
6-1 運用Forming限流觀察元件成形之成因 46
6-1-1 實驗動機 46
6-1-2 Pt/BNOx/TiN元件與Pt/Hf:SO2/TiN元件電性之比較 48
6-1-3 碰撞理論 49
6-1-4 物理模型建立 52
6-2 氮化硼RRAM控制操作方向之特殊性及常用元件之比較 53
6-3 +Forming與-Forming電流之不對稱性 55
6-3-1 Pt/BNOx/TiN元件與Pt/Hf:SiO2/TiN元件讀取電流對Forming限流電性之比較 56
6-3-2 不對稱現象之解釋 57
6-3-3 物理機制模型之建立 59
第七章 氮化硼摻雜二氧化矽多層結構電阻式記憶體 61
7-1 實驗動機 61
7-2 元件製備 63
7-2-1 BN:SiO2薄膜製備 63
7-2-2 HfO2薄膜製備 64
7-3 材料分析 65
7-3-1 FTIR化學定性分析 65
7-3-2 XPS化學定量分析 66
7-4 基本電性量測結果 69
7-5 可靠度測試 72
7-6 物理機制之模型 79
第八章 結論 81
參考文獻 83
參考文獻 References
[1] S. Lai, "Non-Volatile Memory Technologies: The Quest for Ever Lower Cost," Int. Electron Devices Meet., San Francisco, CA, Dec. 15-17, p. 11,2008.
[2] C. Schindler, S. P. Thermadam, R. Waser, and M. N. Kozicki, "Bipolar and Unipolar Resistive Switching in Cu-Doped SiO2," IEEE Trans. Electron Device, vol. 54, pp. 2762-2768, 2007.
[3] D. A. Buck, "Ferroelectrics for digital information storage and switching," MIT Digital Computer Laboratory,1952.
[4] S. Tehrani, J.M. Slaughter, E. Chen, M. Durlam, J. Shi, M. DeHerren, " Progress
and outlook for MRAM technology ", IEEE Trans. Mag., vol. 35, issue 5, 1999.
[5] R. G. Neale, D. L. Nelson, and G. E. Moore, "Nonvolatile and reprogrammable,
the read-mostly memory is here, "Elevtronic, vol. 43, pp.56-60, 1970.
[6] Q. D. Ling, D. J. Liaw, C. Zhu, D. S. H. Chan, E. T. Kang, "Polymer electronic
mamories: Materials, devices and mechanisms", Progress in Polymer Science,
vol. 33, issue 10, pp. 917-918,2008.
[7] H. Cater, "Magnetic RAM Meets the Power Basics, "2013.
[8] R. Bez, "Making the shift from floating-gate to phase-change in non-volatile
memory", EE Times, 2009.
[9] K. M. Kim, B. J. Choi, and C. S. Hwang, "Localized switching mechanism in
resistive switching of atomic-layer-deposited TiO2 thin films," Applied physics
letters, vol. 90, pp. 242906-242906-3, 2007.
[10] A. Sawa, "Resistive switching in transition metal oxides," Materials today,
vol. 11, pp. 28-36, 2008.
[11] B.J.Choi,D.S.Jeong,S.K.Kim1,C.Rohde,S.Choi,J.H.Oh,H.J.Kim,C.S.Hwang,
K.Szot,R.Waser,B.Reichenberg and S.Tiedke,"Resistive switching mechanism of
TiO2 thin films grown by atomic-layer deposition, "Journal of Applied Physics,
vol. 98, issue 3,pp. 033715, 2005.
[12] J. Y. Chen, C. L. Hsin, C. W. Huang, C. H. Chiu, Y. T. Huang, S. J. Lin,
"Dynamic Evolution of Conducting Nanofilament in Resistive Switching
Memories," Nano Letters, vol. 13, pp. 3671-3677, Aug 2013.
[13] H. S. P. Wong, H. Y. Lee, S.M. Yu, Y. S. Chen, Y. Wu, P. S. Chen, B. Lee, F. T.
Chen, and M. J. Tsai, "Metal-Oxide RRAM," Proceedings of the IEEE, vol. 100,
pp. 1951-1970, 2012.
[14] J. B. Wanga, G. W Yang, C. Y. Zhang, X. L. Zhong, Z. H. A Ren,
" Cubic-BN nanocrystals synthesis by pulsed laser induced liquid–solid
interfacial reaction ",Chemical Physics Letters 367 10-14,2003.
[15] N. Y. Tops¢e, H. Tops¢e, and J. A. Dumesic, " Vanadia /Titania Catalysts for
Selective Catalytic Reduction (SCR) of Nitric Oxide by Ammonia ", Journal
of Catalysis 151, pp. 226-240, 1995.
[16] J. Pironon, M. Pelletier, P. de Donato, R. Mosser,
" Characterization of smectite and illite by FTIR spectroscopy of interlayer NH4+ cation ",Clay Minerals 38,201-211,2003.
[17] C. Guimon, D. Gonbeau, G. Guillouzo, O. Dugne, H. S. P. Wong, A. Guette,
R. Naslain, M. Lahaye, " XPS study on BN thin films deposited by CVD on
SiC plane substrates ", Surface and interface analysis, vol. 16, issue1-12,
pp. 440-445, 1990.
[18] D. F. Mitchell, K. B. Clark, J. A. Bardwell, W. N. Lemard, G.R. Massoui,
and I. V. Mitchell, " Film thickness measurements of SiO2 by XPS", Surface
and interface analysis , vol. 21, issue 1, pp. 44-50, 1994.
[19] D. Barreca, A. Milanov, R. A. Fischer, and A. Devi, " Hafnium oxide thin film
grown by ALD : an XPS study", Surface Science Spectra, vol. 14,
pp.34-40,2007.
[20] K. C. Chang, R. Zhang, T. C. Chang, T. M. Tsai, J. C. Lou, J. H. Chen, T. F.
Young, M. C. Chen, Ya-Liang Yang, Yin-Chih Pan, Geng-Wei Chang, Tian-Jian
Chu, C. C. Shih, J. Y. Chen, C. H. Pan, Y. T. Su, Y. E. Syu, Y. H. Tai, and S. M.
Sze, "Origin of Hopping Conduction in Graphene-Oxide-Doped Silicon Oxide
Resistance Random Access Memory Devices", IEEE Electron Device
Letters,vol.34,no.5, 2013.
[21] Connor,Kenneth A., "Chemical Kinetics The study of reaction rates,"1990.
[22] A. Rubio , " Study of the Electronic Structure of hexagonal Boron Nitride on
Metals Substrates, Universit´e des Sciences et Technologies Lille 1,Universidad
del Pais Vasco - Euskal Herriko Unibertsitatea Master Thesis, " 2012.
[23] J. Song, X. Wang, and C. T. Chang, "Preparation and
Characterization of Graphene Oxide , "Journal of Nanomaterials, Article ID
276143, 2014.
[24] Kuan-Chang Chang, Rui Zhang, Ting-Chang Chang, Tsung-Ming Tsai,
Tian-Jian Chu , Hsin-Lu Chen , Chih-Cheng Shih , Chih-Hung Pan, Yu-Ting Su,
Pei-Jung Wu and Simon M. Sze , "High Performance, Excellent Reliability
Multifunctional Graphene Oxide Doped Memristor Achieved by Self-protect ive
Compliance Current Structure," Tech. Dig. IEDM, 33.3.1-33.3.4, 2013.
[25] M. J. Powers, M. Benjamin, L. Porter, R. Nemanich, R. Davis, J. Cumom,
"Observation of a negative electron affinity for boron nitride, "Applied physics
letters, vol. 67, pp. 3912-3914, 1995.

[26] D. A. Neumayer,and E. Cartier, " Materials characterization of ZrO2–SiO2 and
HfO2–SiO2 binary oxides deposited by chemical solution deposition" Journal of
Applied Physics 90, pp.1801,2001.
[27] C. C. G. e Silvaa ,E. C. da S. Rigob , J. Marchic , A. H. de A. Bressianic , J. C.
Bressianic," Hydroxyapatite coating on silicon nitride surfaces using the
biomimetic method, "Material Research,vol.11,no.1, pp. 47-50,2008.
[28] T. C. Chen, C. Y. Peng, C. H. Tseng, M. H. Liao, " Characterization of the
Ultrathin HfO2 and Hf-Silicate Films Grown by Atomic Layer Deposition, "
IEEE Trans. Electron Device, vol. 54, pp. 759,2007.
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:自定論文開放時間 user define
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus: 已公開 available


紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code