Responsive image
博碩士論文 etd-0628118-002313 詳細資訊
Title page for etd-0628118-002313
論文名稱
Title
螺栓鎖緊壓力對質子交換膜燃料電池堆發電效率影響之探討
The Effects of Clamping Force on the Efficiency of PEMFC Stack
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
109
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2018-07-27
繳交日期
Date of Submission
2018-07-30
關鍵字
Keywords
功率密度、多孔性、接觸電阻、鎖緊壓力、質子交換膜燃料電池堆
Power Density, Porosity, Contact Resistance, Bolt Pre-loading, Stack, Proton Exchange Membrane Fuel Cell
統計
Statistics
本論文已被瀏覽 5665 次,被下載 53
The thesis/dissertation has been browsed 5665 times, has been downloaded 53 times.
中文摘要
本論文之目的為探討螺栓鎖緊壓力變化(5-20MPa)對質子交換膜燃料電池發電效率的影響,其中以氣體擴散層的接觸電阻值和多孔性之重大影響視為主要參數來判斷,並透過有限元素法為基礎的軟體ANSYS 15.0建立其三維模型,建立之電池堆由一至四顆電池堆疊組成,接著透過電化學分析軟體Fluent 15.0,進一步探討螺栓鎖緊壓力變化對質子交換膜燃料電池發電效率之影響。
質子交換膜燃料電池模型是由端板、集電器、雙極板、質子交換膜、觸媒層和氣體擴散層所組成。本論文使用之反應區域為9cm^2,電池堆設計則是將每片膜電極組之兩側連結雙極板,相互串聯組合而成之電池堆,且由8組螺栓與螺帽鎖緊固定,先將螺帽固定,並藉由ANSYS內建的Bolt Pretension功能於螺栓上施加螺栓鎖緊壓力。由模擬結果得知,氣體擴散層之接觸電阻和多孔性均會隨著螺栓鎖緊壓力的增加而減少,當鎖緊壓力由5MPa增加至20MPa下,串連一至四顆電池堆之氣體擴散層接觸電阻平均降低了61.07%,可以減少歐姆損失,進而提升質子交換膜燃料電池的發電效率,然而氣體擴散層之多孔性平均降低了18.84%,將增加氣體穿透阻力,因而使質子交換膜燃料電池之發電效率下降。串連一至四顆電池堆之電池結構在螺栓鎖緊壓力由5MPa增加至20MPa下,發電效率平均提升約了21.1%。最後,可以發現在串聯一至四顆電池堆結構中,最佳鎖緊壓力皆發生在鎖緊壓力為10MPa時,在此鎖緊壓力下,不僅有最佳的導電率,同時氣體傳輸阻力也不大,具有較低的接觸電阻與良好的多孔性結果,進而獲得各電池結構之最大功率密度。
Abstract
The purpose of this study is to investigate the effect of bolt pre-loading variation (5-20MPa) on the efficiency of PEMFC (Proton Exchange Membrane Fuel Cell). In this work, the value of contact resistance and porosity of GDL (Gas Diffusion Layer) are the important factors to judge performance. A 3D FEM (Finite Element Method) model of a complete PEMFC stack was developed incorporated with the commercial software ANSYS 15.0. This stack consisted of one to four cells, and then explored the effect of bolt pre-loading variation on the efficiency of PEMFC with the electrochemical simulation Fluent 15.0.
The PEMFC module with an active area of 9cm^2 were composed of end plates, current collectors, bipolar plates, membrane, catalyst layer, and gas diffusion layer. And a PEMFC stack was assembled from a number of repeated units of membrane electrolyte assembly (MEAs) and bipolar plates. All elements were fixed by 8 pairs of bolts and nuts. The fixed nuts and bolts were pre-tensioned by the ANSYS built-in function. From the results of analysis, both contact resistance and porosity of GDL were decreased with the increasing of bolt pre-loading. In a 1-4cell PEMFC, the contact resistance was decreased 61.07%. The decreasing of contact resistance can lead to the ohmic losses and the increase of efficiency for PEMFC. However, the porosity was decreased 18.84%. The decrease of porosity of GDL will lead to the increase of resistance of permeability and result in the reduction of efficiency for PEMFC. The power density of the 1-4cell module was increased by 21.1% while the bolt pre-loading increasing. It is found that the bolt pre-loading of 10MPa is an optimal value for each fuel cell system. Then, we not only get the best conductivity, but also increase the gas transmission resistance. That provides the combination of low contact resistance and good porosity can obtain the maximum power density.
目次 Table of Contents
論文審定書+i
論文公開授權書+ii
誌謝+iii
摘要+iv
Abstract+v
目錄+vi
圖目錄+viii
表目錄+x
第一章 緒論+1
1.1前言+1
1.2燃料電池的發展+1
1.2.1燃料電池的種類+3
1.2.2質子交換膜燃料電池之特點+4
1.2.3質子交換膜燃料電池構造+5
1.2.4質子交換膜燃料電池工作原理+6
1.3文獻回顧+7
1.3.1外在操作條件對質子交換膜燃料電池性能之影響+7
1.3.2組裝壓力或結構改變對燃料電池性能之影響+9
1.3.3雙極板對質子交換膜燃料電池性能之影響+12
1.3.4電池堆結構對燃料電池性能之影響+14
1.4研究動機與目的+17
1.5全文架構+17
第二章 燃料電池堆模型的建立與理論分析+27
2.1研究流程+27
2.2基本假設+27
2.3建立模型與相關設定+28
2.3.1模型結構+28
2.3.2有限元素/體積分析+29
2.3.3邊界條件與負載+30
2.4氣體擴散層之接觸電阻計算+31
2.5氣體擴散層之多孔性計算+32
第三章 模擬分析結果+41
3.1收斂性分析+41
3.2模擬驗證+43
3.3質子交換膜燃料電池之溫度分析+43
3.4分析氣體擴散層之應力及應變+44
3.5氣體擴散層之接觸電阻與多孔性數值+44
3.6螺栓鎖緊壓力對於不同結構的質子交換膜燃料電池之發電效率+45
第四章 討論+61
4.1螺栓鎖緊壓力變化於電池溫度分布之影響+61
4.2螺栓鎖緊力變化對氣體擴散層之應力及應變分布之影響+62
4.3氣體擴散層之接觸電阻與多孔性變化討論+63
4.4不同電池結構對氣體擴散層特性之影響+64
4.5螺栓鎖緊壓力變化於反應氣體分布之影響+65
4.6螺栓鎖緊壓力變化於電流密度分布之影響+66
4.7螺栓鎖緊壓力對於質子交換膜燃料電池堆發電效率之提升與優化+67
第五章 結論與未來展望+91
5.1結論+91
5.2未來展望+93
參考文獻+94
參考文獻 References
[1] 黃鎮江, 燃料電池. 全華圖書股份有限公司, 2007.
[2] 黃鎮江, 燃料電池(第三版). 滄海書局, 2008.
[3] German government to fund fuel cell stack manufacturing project AutoStack-Industrie. Fuel Cells Bulletin, 2018(1): p. 12.
[4] 林昇佃, 余., 張幼珍, 燃料電池:新世紀能源. 滄海書局, 2006.
[5] Al-Baghdadi, S., A CFD study of hygro–thermal stresses distribution in PEM fuel cell during regular cell operation. Renewable Energy, 2007. 34: p. 674-682.
[6] Wang, L., et al., A parametric study of PEM fuel cell performances. International journal of hydrogen energy, 2003. 28(11): p. 1263-1272.
[7] Ahmed, D.H., H.J. Sung, and J. Bae, Effect of GDL permeability on water and thermal management in PEMFCs-II. Clamping force. International Journal of Hydrogen Energy, 2008. 33: p. 3786-3800.
[8] Matian, M., et al., An experimentally validated heat transfer model for thermal management design in polymer electrolyte membrane fuel cells. Proceedings of the Institution of Mechanical Engineers, Part A: Journal of Power and Energy, 2010. 224(8): p. 1069-1081.
[9] Matian, M., A.J. Marquis, and N.P. Brandon, Application of thermal imaging to validate a heat transfer model for polymer electrolyte fuel cells. International Journal of Hydrogen Energy, 2010. 35(22): p. 12308-12316.
[10] Mohammadi, A., et al., A novel approach for modeling the internal behavior of a PEMFC by using electrical circuits. International Journal of Hydrogen Energy, 2017.
[11] Mao, L., L. Jackson, and B. Davies, Investigation of PEMFC fault diagnosis with consideration of sensor reliability. International Journal of Hydrogen Energy, 2017.
[12] Kancsár, J., et al., A novel approach for dynamic gas conditioning for PEMFC stack testing. International Journal of Hydrogen Energy, 2017. 42(48): p. 28898-28909.
[13] Huang, L., et al., Adaptive thermal control for PEMFC systems with guaranteed performance. International Journal of Hydrogen Energy, 2018.
[14] Abdollahzadeh, M., et al., Three-dimensional modeling of PEMFC with contaminated anode fuel. Energy, 2018. 152: p. 939-959.
[15] Lee, W.K., et al., The Effects of Compression and Gas Diffusion Layers on the Performance of a PEM Fuel Cell. Journal of Power Sources, 1999. 84: p. 45-51.
[16] Chu, H.-S., C. Yeh, and F. Chen, Effects of porosity change of gas diffuser on performance of proton exchange membrane fuel cell. Journal of power sources, 2003. 123(1): p. 1-9.
[17] Ge, J., A. Higier, and H. Liu, Effect of gas diffusion layer compression on PEM fuel cell performance. Journal of Power Sources, 2005. 159: p. 922-927.
[18] Zhou, P., C.W. Wu, and G.J. Ma, Contact resistance prediction and structure optimization of bipolar plates. Journal of Power Sources, 2006. 163: p. 1115-1122.
[19] Zhou, P., C.W. Wu, and G.J. Ma, Influence of clamping force on the performance of PEMFCs. Journal of Power Sources, 2007. 163(2): p. 874-881.
[20] Zhou, P. and C.W. Wu, Numerical study on the compression effect of gas diffusion layer on PEMFC performance. Journal of Power Sources, 2007. 170: p. 93-100.
[21] Bazylak, A., et al., Effect of compression on liquid water transportation and microstructure of PEMFC gas diffusion layers. Journal of Power Sources, 2007. 163: p. 784-792.
[22] Lin, J.H., et al., Effect of gas diffusion layer compression on the performance in a proton exchange membrane fuel cell. Fuel, 2007. 87: p. 2420-2424.
[23] Chang, W.R., et al., Effect of clamping pressure on the performance of a PEM fuel cell. Journal of Power Sources, 2007. 166: p. 149-154.
[24] Kandlikar, S.G., et al., Uneven gas diffusion layer intrusion in gas channel arrays of proton exchange membrane fuel cell and its effects on flow distribution. Journal of Power Sources, 2009. 194: p. 328-337.
[25] Mehboob, H., et al., Analysis of the Clamping Pressure Effect in PEM Fuel Cell Structure by FEM and Experiment. Third European fuel cell technology & application Piero Lunghi Conference, 2009. Rome, Italy: p. 95.
[26] H.E.U., A., et al., Free vibration analysis of a polymer electrolyte membrane fuel cell. Journal of Power Sources, 2011. 196: p. 5520-5525.
[27] Chien, C.-H., et al., Effects of bolt pre-loading variations on performance of GDL in a bolted PEMFC by 3-D FEM analysis. Energy, 2016. 113: p. 1174-1187.
[28] 劉烜廷, 螺栓鎖緊力對於質子交換膜燃料電池效率及擴散層特性之影響. 國立中山大學機械與機電工程研究所碩士論文, 2017.
[29] Wang, G., et al., Degradation behavior of a proton exchange membrane fuel cell stack under dynamic cycles between idling and rated condition. International Journal of Hydrogen Energy, 2018. 43(9): p. 4471-4481.
[30] Chien, C.H., et al., 3-Dimensional Numerical Stress Analysis around a Micro-Channel Wall Crack Tip in a Micro-PEMFC. The 31 th National Conference on Theoretical and Applied Mechanics, Kaohsiung, Taiwan, December 21-22, 2007.
[31] Chien, C.H., et al., The Effects of Variations of Flow Field and Geometry of Micro-Channel on the Cracked Ag-SU8 Interface in a Micro-PEMFC. Journal of the Chinese Society of Mechanical Engineers, 2007. 28(4): p. 357-365.
[32] Jang, J.H., et al., Three-dimensional numerical study on cell performance and transport phenomena of PEM fuel cell with conventional flow fields. Journal of Hydrogen Energy, 2008. 33: p. 156-164.
[33] Manso, A.P., et al., Numerical analysis of the influence of the channel cross-section aspect ratio on the performance of a PEM fuel cell with serpentine flow field design. International Journal of Hydrogen Energy, 2011. 36: p. 6795-6808.
[34] Ravishankar, S. and K.A. Prakash, Numerical studies on thermal performance of novel cooling plate designs in polymer electrolyte membrane fuel cell stacks. Applied Thermal Engineering, 2014. 66: p. 239-251.
[35] Zhang, G., et al., A 3D model of PEMFC considering detailed multiphase flow and anisotropic transport properties. International Journal of Heat and Mass Transfer, 2017. 115: p. 714-724.
[36] Yin, Y., et al., Numerical investigation on the characteristics of mass transport and performance of PEMFC with baffle plates installed in the flow channel. International Journal of Hydrogen Energy, 2018. 43(16): p. 8048-8062.
[37] Lai, Y.-H., et al., Channel intrusion of gas diffusion media and the effect on fuel cell performance. Journal of Power Sources, 2008. 184(1): p. 120-128.
[38] Hou, Y.P., W. Zhou, and C.Y. Shen, Experimental investigation of gas-tightness and electrical insulation of fuel cell stack under strengthened road vibrating conditions. Journal of hydrogen energy, 2011. 36: p. 13763-13768.
[39] Bates, A., et al., Simulation and experimental analysis of the clamping pressure distribution in a PEM fuel cell stac. Journal of Hydrogen Energy, 2013. 38: p. 6481-6493.
[40] Carral, C. and P. Mélé, A numerical analysis of PEMFC stack assembly through a 3D finite element model. International journal of hydrogen energy, 2014. 39(9): p. 4516-4530.
[41] Alizadeh, E., et al., Investigation of contact pressure distribution over the active area of PEM fuel cell stack. International Journal of Hydrogen Energy, 2016. 41(4): p. 3062-3071.
[42] Liu, B., et al., Effect of impact acceleration on clamping force design of fuel cell stack. Journal of Power Sources, 2016. 303: p. 118-125.
[43] Liu, B., et al., Vibration mode analysis of the proton exchange membrane fuel cell stack. Journal of Power Sources, 2016. 331: p. 299-307.
[44] Liu, L.F., B. Liu, and C.W. Wu, Reliability prediction of large fuel cell stack based on structure stress analysis. Journal of Power Sources, 2017. 363: p. 95-102.
[45] Dong, J., X. Xu, and B. Xu, CFD analysis of a novel modular manifold with multi-stage channels for uniform air distribution in a fuel cell stack. Applied Thermal Engineering, 2017. 124: p. 286-293.
[46] Drakselová, M., et al., Three-dimensional macrohomogeneous mathematical model of an industrial-scale high-temperature PEM fuel cell stack. Electrochimica Acta, 2018. 273: p. 432-446.
[47] Inc., A., Modeling a Single-Channel, Counter-Flow Polymer Electrolyte Membrane (PEM) Fuel Cell. 2007.
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:自定論文開放時間 user define
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus: 已公開 available


紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code