Responsive image
博碩士論文 etd-0628118-020636 詳細資訊
Title page for etd-0628118-020636
論文名稱
Title
異質混摻系統中高分子於奈米侷限環境之結晶行為探討
Polymer Crystallization within Nano-Confined Environment in Heterogeneous Blends
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
74
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2018-07-23
繳交日期
Date of Submission
2018-07-28
關鍵字
Keywords
結晶行為、嵌段共聚物、物理侷限、自組裝、異質性混摻
Heterogeneous Blends, Self-Assembly, Block copolymer, Physical Confinement, Crystallization
統計
Statistics
本論文已被瀏覽 5650 次,被下載 0
The thesis/dissertation has been browsed 5650 times, has been downloaded 0 times.
中文摘要
雙嵌段共聚物(diblock copolymers)可藉由調整各鏈段不同體積分率而自組裝形成不同有序排列的微相分離結構,可提供一個較簡易形成的奈米結構來探討結晶性高分子在混摻系統中侷限環境下的結晶行為。不同於高分子混摻系統中常見的同質性混摻 (homogeneous blends),我們採用較少見的異質性混摻(heterogeneous blends)並選擇溶解度參數相近的結晶性材料聚環氧乙烷(PEO)與嵌段共聚物聚苯乙烯聚二乙烯吡啶(PS-P2VP)來研究,發現混摻入不同分子量PEO時,於PS-P2VP的微相分離環境下選擇性地分散聚集在極性P2VP鏈段中形成不同的形態如六角排列圓柱堆積結構或是奈米層狀微結構。不同於半結晶性雙嵌段共聚物(semi-crystalline diblock copolymers)之化學侷限(chemical confinement)系統由於結晶性PEO鏈段和PS-P2VP間並無化學鍵結因素存在,所以在此混摻系統中PEO的結晶行為是受到物理侷限(physical confinement)環境下形成局部偏析聚集而產生球狀、柱狀之結晶,抑或是太過分散而形成無法結晶的PEO。本研究利用穿透式電子顯微鏡之形態觀察以及微差掃描熱卡計所測定之混摻系統下的結晶熔點與相應之侷限結晶形態之關聯性,並配合小角X光散射與廣角X光繞射提供統計性的數據用以確認嵌段共聚物之微相分離結構以及PEO之結晶行為,發現混摻高分子量PEO之系統傾向自我聚集成球狀結晶在P2VP鏈段區中,透過不同的除核溫度,可以得到不同尺寸的球狀侷限結晶,並在混摻低分子量PEO系統中,雖然形成不均勻之聚集分布在P2VP鏈段區中,但低分子量PEO卻因侷限效應而呈現出不結晶之行為。
Abstract
Owing to various nanoscale structures from self-assemble block copolymers (BCPs), it could provide a facile means to study polymer crystallization under nanoscale confinement. Different from the studies using homogeneous blends (A-B/HA or A-B/HB system) with an additive homopolymer identical to one of the blocks in block copolymers, here we employed heterogeneous blends (A-B/HC system) with the additive homopolymer chemically different from the constituted blocks. Crystalline homopolymers, polyethylene oxide (PEO) with different molecular weights (MWs), were introduced into amorphous BCPs, polystyrene-block-poly(2-vinyl pyridine) (PS-P2VP). Investigation was carried out for the PEO crystallization physically confined within different nano-sized morphologies including lamellae and hexagonally-packed cylinders. We found that thermal treatments with different elimination temperatures (Tmax) of crystallization, crystallization of high-MW PEO could be confined within distinct geometry of spheres or pillar-shaped cylinders, due to the variation of the chain mobility of the PEO blocks. This results in significant difference in crystallization and melting behavior under these physically confined nanostructures. To examine the compatibility effect, low-MW PEO is also blended with the PS-P2VP BCP. We observed the coexistence of uniform and nonuniform localizations of low-MW PEO chains within the P2VP nanodomain. Owing to well solubilization, low-MW PEO chains exhibit non-crystallizable behavior under physical confinement.
目次 Table of Contents
論文審定書 i
誌謝 ii
摘要 iii
Abstract iv
Contents vi
List of Figures viii
List of Tables xi
Chapter 1. Introduction 1
1.1 Self-Assembly 1
1.2 Block Copolymer (BCP) Self-assembly 4
1.3 High-MW BCPs/ Homopolymer Blending System 6
1.4 Solubility Limit 10
1.5 Crystallizable BCPs with chemical confinement 12
1.6 Physical confinement 14
Chapter 2. Objectives 18
Chapter 3. Materials and Experimental Methods 19
3.1 Materials 19
3.2 Sample Preparation 19
3.2.1 Bulk samples prepared by solution casting 19
3.2.2 PS-P2VP/PEO Polymer Blending System 20
3.3 Microstructural Characterization 20
3.3.1 Transmission electron microscopy (TEM) 20
3.3.2 Differential scanning calorimetry (DSC) 21
3.3.3 Small-angle X-ray scattering (SAXS) and Wide-angle X-ray diffraction (WAXD) 22
Chapter 4. Results & Discussion 23
4.1 Self-assembling Morphology of High-MW PS-P2VP BCP in Bulk 23
4.2 Physical Confinement of PS-b-P2VP/PEO Blends 26
4.2.1 Morphologies in PS-b-P2VP / PEO Heterogeneous Blends 26
4.2.2 Effect of Molecular Weight of PEO in Heterogeneous Blends 33
4.3 Thermal behaviors of Heterogeneous blends 35
4.3.1 Thermal Properties of PS-P2VP BCP and PEO homopolymers 35
4.3.2 Thermal Properties of PS-P2VP/PEO100 Blends 37
4.3.3 Thermal properties of PS-b-P2VP / PEO20 Blends 49
Chapter 5. Conclusion 53
Chapter 6. References 55
參考文獻 References
1. Lehn, J.-M. Supramolecular chemistry: receptors, catalysts, and carriers. Science 1985, 227, 849−856.
2. Whitesides, G. M.; Mathias, J. P.; Seto, C. T. Molecular Self-Assembly and Nanochemistry: A Chemical Strategy for the Synthesis of Nanostructures. Science 1991, 254, 1312−1319.
3. Lehn, J.-M. Supramolecular Chemistry. Concepts and Perspectives; VCH, Weinheim, 1995.
4. Prockop, D. J.; Fertala, A. The Collagen Fibril: The Almost Crystalline Structure. J. Struct. Biol. 1998, 122, 111−118.
5. Whitesides, G. M.; Grzybowski, B. Self-Assembly at All Scales. Science 2002, 295, 2418−2421.
6. Clark, T. D.; Tien, J.; Duffy, D. C.; Paul, K. E.; Whitesides, G. M. Self-Assembly of 10−μm-Sized Objects into Ordered Three-Dimensional Arrays. J. Am. Chem. Soc.2001, 123, 7677−7682.
7. Jakubith, S.; Rotermund, H. H.; Engel, W.; von Oertzen, A.; Ertl, G. Spatiotemporal Concentration Patterns in a Surface Reaction: Propagating and Standing Waves, Rotating Spirals, and Turbulence. Phys. Rev. Lett.1990, 65, 3013−3016.
8. Whitesides, G. M.; Ismagilov, R. F. Complexity in Chemistry. Science 1999, 284, 89−92.
9. Bates, F. S.; Fredrickson, G. H. Block Copolymers−Designer Soft Materials. Phys Today 1999, 52, 32−38.
10. Park, C.; Yoon, J.; Thomas, E. L. Enabling nanotechnology with self assembled block copolymer patterns. Polymer 2003, 44, 6725−6760.
11. Muthukumar M.; Ober C. K.; Thomas E. L. Competing Interactions and Levels of Ordering in Self-Organizing Polymeric Materials. Science 1997, 277, 1225−1232.
12. Thomas, E. L.; Anderson, D. M.; Henkee, C. S.; Hoffman, D. Periodic area-minimizing surfaces in block copolymers. Nature 1988, 334, 598−601.
13. Matsen, M. W.; Bates, F. S. Origins of Complex Self-Assembly in Block Copolymers. Macromolecules 1996, 29, 7641−7644.
14. Hashimoto, T.; Hasegawa, H.; Tanaka, H. Ordered Structure in Mixtures of a Block Copolymer and Homopolymers. 2. Effects of Molecular Weights of Homopolymers. Macromolecules 1990, 23, 4378−4386.
15. Tanaka, H.; Hasegawa, H.; Hashimoto, T. Ordered Structure in Mixtures of a Block Copolymer and Homopolymers. 1. Solubilization of Low Molecular Weight Homopolymers. Macromolecules 1991, 24, 240−251.
16. Roe, R. J.; Jeon, K. J. Solubilization of a Homopolymer in a Block Copolymer. Macromolecules 1994, 27, 2439−2447.
17. Harada, A.; Kawaguchi, Y.; Nishiyama, T.; Okada, M.; Kamachi, M. Complex Formation of Poly(ε-caprolactone) with Cyclodextrins. Macromolecules 2000, 33, 4472−4477.
18. Tonelli, A.E.; Lu, J.; Shin, I.D. Nojima, S. Formation and characterization of the inclusion compounds between poly (ε-caprolactone)-poly (ethylene oxide)-poly (ε-caprolactone) triblock copolymer and α- and γ-cyclodextrin. Polymer 2000, 41, 5871−5883.
19. Mayes, A. M.; Russell, T. P.; Satija, S. K.; Majkrzak, C. F. Homopolymer Distributions in Ordered Block Copolymers. Macromolecules 1992, 25, 6523−6531.
20. Cheng, S. Z. D.; Hsiao, M. S.; Zheng, J. X.; Horn, R. M. V.; Quirk, R. P.; Thomas, E. L.; Chen, H. L.; Lotz, B. Poly(ethylene oxide) Crystal Orientation Change under 1D Nanoscale Confinement using Polystyrene-block-poly(ethylene oxide) Copolymers: Confined Dimension and Reduced Tethering Density Effects. Macromolecules 2009, 42, 8343−8352.
21. Hsiao, M. S.; Chen, W. Y.; Zheng, J. X.; Van Horn, R. M.; Quirk, R. P.; Ivanov, D. A.; Thomas, E. L.; Lotz, B.; Cheng, S. Z. D. Poly(ethylene oxide) Crystallization within a One-Dimensional Defect-Free Confinement on the Nanoscale. Macromolecules 2008, 41, 4794−4801.
22. Sun, Y. S.; Chung, T. M.; Li, Y. J.; Ho, R. M.; Ko, B. T.; Jeng, U. S.; Lotz, B. Crystalline Polymers in Nanoscale 1D Spatial Confinement. Macromolecules 2006, 39, 5782−5788.
23. Ho, R. M.; Chiang, Y. W.; Lin, C. C.; Bai, S. J. Block Copolymer Self-Assembly Induced Compatibilization of PCL/PS-PEP Blends. Macromolecules 2002, 35, 1299−1306.
24. Ho, R. M.; Chiang, Y. W.; Lin, C. C.; Huang, B. H. Crystallization and Melting Behavior of Poly(ε-caprolactone) under Physical Confinement. Macromolecules 2005, 38, 4769−4779.
25. Nojima, S.; Ohguma, Y.; Kadena, K.-i.; Ishizone, T.; Iwasaki, Y.; Yamaguchi, K. Crystal Orientation of Poly(ε-caprolactone) Homopolymers Confined in Cylindrical Nanodomains. Macromolecules 2010, 43, 3916−3923.
26. Nojima, S.; Ohguma, Y.; Namiki, S.; Ishizone, T.; Yamaguchi, K. Crystallization of Homopolymers Confined in Spherical or Cylindrical Nanodomains. Macromolecules 2008, 41, 1915−1918.
27. Liu, C. L.; Chen, H. L. Variable crystal orientation of poly (ethylene oxide) confined within the tubular space templated by anodic aluminum oxide nanochannels. Macromolecules 2017, 50, 631−641.
28. Woo, E.; Huh, J.; Jeong, Y. G.; Shin, K. From Homogeneous to Heterogeneous Nucleation of Chain Molecules under Nanoscopic Cylindrical Confinement. Phys. Rev. Lett. 2007, 98, 136103-1−136103-4.
29. Shin, K.; Woo, E.; Jeong, Y. G.; Kim, C.; Huh, J.; Kim, K. W. Crystalline Structures, Melting, and Crystallization of Linear Polyethylene in Cylindrical Nanopores. Macromolecules 2007, 40, 6617−6623.
30. Duran, H.; Steinhart, M.; Butt, H. J.; Floudas, G. From Heterogeneous to Homogeneous Nucleation of Isotactic Poly(propylene) Confined to Nanoporous Alumina. Nano Lett 2011, 11, 1671−1675.
31. Chen, N.; Yan, L. T.; Xie, X. M. Interplay between Crystallization and Phase Separation in PS‑b‑PMMA/PEO Blends: The Effect of Confinement. Macromolecules 2013, 46, 3544−3553.
32. Hirata, E.; Ijitsu, T.; Soen, T.; Hashimoto, T.; Kawai, H. Domain structure and crystalline morphology of AB and ABA type block copolymers of ethylene oxide and isoprene cast from solutions. Polymer 1975, 16, 249−260.
33. Hashimoto, T.; Kimishima, K.; Hasegawa, H. Self-Assembly and Patterns in Binary Mixtures of SI block Copolymer and PPO. Macromolecules 1991, 24, 5704−5712.
34. Fernández-Berridi, M. J.; Otero, T. F.; Guzman, G. M.; Elorza, J. M. Determination of the Solubility Parameter of Poly (ethylene oxide) at 25°C by Gas-Liquid Chromatography. Polymer 1982, 23, 1361−1366.
35. Brandrup. J.; Immergut, E. H.; Grulke, E.A.; Abe, A.; Bloch, D. R. Polymer Handbook, 4th ed.; John Wiley & Sons, Inc.: New York, 1999.
36. Robitaille, C.; Prud'Homme, J. Thermal and mechanical properties of a poly (ethylene oxide-b-isoprene-b-ethylene oxide) block polymer complexed with sodium thiocyanate. Macromolecules 1983, 16, 665−671.
37. Yeh, C. L.; Hou, T.; Chen, H. L.; Yeh, L. Y.; Chiu, F. C.; Müller, A. J.; Hadjichristidis, N. Lower Critical Ordering Transition of Poly (ethylene oxide)-block- poly (2-vinylpyridine). Macromolecules 2011, 44, 440−443.
38. Chen, H. L.; Hsiao, S. C.; Lin, T. L.; Yamauchi, K.; Hasegawa, H.; Hashimoto, T. Microdomain-Tailored Crystallization Kinetics of Block Copolymers. Macromolecules 2001, 34, 671−674.
39. Kimishima, K.; Hashimoto, T.; Han, C. D. Spatial distribution of added homopolymer within the microdomains of a mixture consisting of an ABA-type triblock copolymer and a homopolymer. Macromolecules 1995, 28, 3842−3853.
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:自定論文開放時間 user define
開放時間 Available:
校內 Campus:永不公開 not available
校外 Off-campus:永不公開 not available

您的 IP(校外) 位址是 3.129.39.55
論文開放下載的時間是 校外不公開

Your IP address is 3.129.39.55
This thesis will be available to you on Indicate off-campus access is not available.

紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 永不公開 not available

QR Code