Responsive image
博碩士論文 etd-0628118-105352 詳細資訊
Title page for etd-0628118-105352
論文名稱
Title
以二氧化鈦或二氧化錳奈米顆粒修飾氧化鋅奈米管之非酶葡萄糖感測器
Non-Enzymatic Glucose Sensors with Decoration of TiO2 or MnO2 Nanoparticles on ZnO Nanotubes
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
93
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2018-07-24
繳交日期
Date of Submission
2018-07-28
關鍵字
Keywords
二氧化鈦、水熱法、二氧化錳、氧化鋅奈米管、非酶葡萄糖感測器
znic oxide nanotubes, titanium dioxide, hydrothermal synthesis, manganese dioxide, non-enzymatic glucose sensor
統計
Statistics
本論文已被瀏覽 5642 次,被下載 0
The thesis/dissertation has been browsed 5642 times, has been downloaded 0 times.
中文摘要
本論文主要探討兩種金屬氧化物(二氧化鈦及二氧化錳)之奈米顆粒,分別修飾於氧化鋅奈米管/ITO之基板上,製備非酶葡萄糖感測元件。首先以射頻濺鍍系統沉積氧化鋅種子層在ITO玻璃基板上,透過水熱法成長氧化鋅奈米柱。再以鹼性蝕刻溶液對氧化鋅奈米柱進行蝕刻,得到氧化鋅奈米管(ZnO NTs/ ITO)。另外,本研究亦合成TiO2、MnO2奈米顆粒。分別以浸塗法與滴塗法成長TiO2、MnO2在ZnO NTs上,完成浸塗之TiO2/ ZnO/ ITO、滴塗之TiO2/ ZnO/ ITO與滴塗之MnO2/ ZnO/ ITO感測元件。採用ZnO NTs結構是因為其具有穩定的奈米級形貌,能夠有效地增加待測物與電極的接觸面積。而修飾的兩種不同的金屬氧化物奈米顆粒,能夠進一步提升元件對葡萄糖的感測能力。
實驗結果得知,滴塗17.5mg之MnO2/ ZnO/ ITO感測元件對葡萄糖有最佳的靈敏度。其靈敏度為109.61μAmM-1cm-2,R2值為0.9959,線性感測範圍為0.1mM~7.0mM。此外,添加干擾物對於電流之影響小於10%,響應時間小於3秒。優異的葡萄糖感測器能更精準、快速地檢測糖尿病,在食品工業的發展上也有相當大的重要性。
Abstract
In this thesis, we investigated zinc oxide (ZnO) nanotubes/ITO glass substrate decorated with two different metal oxides’ nanoparticles (TiO2 and MnO2) for non-enzymatic glucose sensors. Firstly, a ZnO seed layer was deposited on ITO glass substrate by RF sputtering system. ZnO nanorods were then grown by hydrothermal synthesis. Alkaline etching solution was prepared to etch ZnO nanorods into nanotubes (ZnO NTs/ITO). In addition, TiO2 nanoparticles and MnO2 nanoparticles were also grown in this study. TiO2 and MnO2 nanoparticles were decorated on ZnO NTs by dip coating and drop coating respectively to complete the dip-coated TiO2/ ZnO/ ITO, the drop-coated TiO2/ ZnO/ ITO and the drop-coated MnO2/ ZnO/ ITO sensing elements. The ZnO NTs structure is used because it has a stable and excellent nano-scale morphology, which can effectively increase the contact area between the analyte and the electrode. With decoration of two different metal oxides, the sensing ability to glucose is effectively improved.
The experimental results show that the 17.5mg drop-coated MnO2/ ZnO/ ITO sensing element has the best sensing performance to glucose. The sensitivity is 109.612μAmM-1cm-2, the value of R2 is 0.9959, and the linear sensing range is 0.1mM~7.0mM. The addition of interferents has an effect on the current of less than 10% and the response time is less than 3 seconds. Excellent glucose sensors for detecting diabetes is more accurately and quickly. It is also important to the development of food industry.
目次 Table of Contents
論文審定書 ................................ ................................ ................................ .................... i
致謝 ................................ ................................ ................................ ............................... ii
摘要 ................................ ................................ ................................ .............................. iii
Abstract ................................ ................................ ................................ ......................... iv
目錄 ................................ ................................ ................................ ............................... v
圖目錄 ................................ ................................ ................................ ........................ viii
表目錄 ................................ ................................ ................................ .......................... xi
第一章 緒論 ................................ ................................ ................................ ................. 1
1-1 前言 ................................ ................................ ................................ ................ 1
1-2 生醫感測 器介紹 ................................ ................................ ............................ 1
1-3 葡萄糖介紹 ................................ ................................ ................................ .... 2
1-4 金屬氧化物介紹 ................................ ................................ ............................ 2
1-4-1 氧化鋅 ................................ ................................ ................................ . 2
1-4-2 二氧化鈦 ................................ ................................ ............................. 3
1-4-3 二氧化錳 ................................ ................................ ............................. 3
1-5 論文架構 ................................ ................................ ................................ ........ 3
第二章 理論基礎 ................................ ................................ ................................ ......... 5
2-1 奈米結構生長原理 ................................ ................................ ........................ 5
2-1-1 射頻磁控濺鍍系統 射頻磁控濺鍍系統 ................................ ................................ ............. 5
2-1-2 氧化鋅水熱法生長原理 氧化鋅水熱法生長原理 ................................ ................................ ..... 7
2-1-3 氧化鋅蝕刻原 理 ................................ ................................ ................. 7
2-1-4 二氧化鈦生長原理 二氧化鈦生長原理 ................................ ................................ ............. 9
2-1-5 二氧化錳生長原理 二氧化錳生長原理 ................................ ................................ ............. 9
2-1-6 浸塗法生長原理 ................................ ................................ ............... 10
2-1-7 滴塗法生長原理 ................................ ................................ ............... 10
2-2 場發射型掃描式電子顯微鏡 ................................ ................................ ...... 11
2-3能量分散析儀 ................................ ................................ ........................... 12
2-4 X光粉末繞射儀 ................................ ................................ ........................... 13
2-5 電化學反應原理 ................................ ................................ .......................... 14
2-5-1 電化學阻抗分析儀 電化學阻抗分析儀 ................................ ................................ ........... 14
2-5-2 非酶葡萄糖感測器 非酶葡萄糖感測器 ................................ ................................ ........... 15
2-5-2 電極選用 ................................ ................................ ........................... 15
2-5-3 循環伏安法 ................................ ................................ ....................... 16
2-5-4 電流分析法 ................................ ................................ ....................... 16
2-6 金屬氧化物與葡萄糖反應機制 ................................ ................................ .. 17
第三章 實驗製程 ................................ ................................ ................................ ....... 18
3-1 實驗藥品與材料 ................................ ................................ .......................... 18
3-2 製程步驟與實驗參數 ................................ ................................ .................. 20
3-2-1清洗基板 ................................ ................................ ............................ 20
3-2-2 濺鍍沉積氧化鋅種子層 濺鍍沉積氧化鋅種子層 ................................ ................................ ... 21
3-2-3 水熱成長氧化鋅奈米柱 水熱成長氧化鋅奈米柱 ................................ ................................ ... 21
3-2-4 蝕刻氧化鋅奈米管 蝕刻氧化鋅奈米管 ................................ ................................ ........... 22
3-2-5 氧化鋅奈米管浸塗 氧化鋅奈米管浸塗 成長二氧化鈦奈米顆粒 ................................ ... 22
3-2-6二氧化鈦奈米顆粒滴塗修飾鋅管 二氧化鈦奈米顆粒滴塗修飾鋅管 ................................ .... 23
3-2-7 二氧化錳奈米顆粒滴塗修飾鋅管 二氧化錳奈米顆粒滴塗修飾鋅管 ................................ ... 24
第四章 結果與討論 ................................ ................................ ................................ ... 25
4-1 浸塗 TiO2/ZnO/ITO之分析 ................................ ................................ ........ 25
4-1-1 奈米結構分析 ................................ ................................ ................... 25
4-1-2 電化學掃描速率分析 電化學掃描速率分析 ................................ ................................ ....... 26
4-1-3 靈敏度分析 ................................ ................................ ...................... 26
4-2 滴塗 TiO2/ZnO/ITO之分析 ................................ ................................ ........ 27
4-2-1 奈米結構分析 ................................ ................................ ................... 27
4-2-2 電化學掃描速率分析 電化學掃描速率分析 ................................ ................................ ....... 28
4-2-3靈敏度分析 ................................ ................................ ........................ 28
4-2-4 干擾物分析 ................................ ................................ ....................... 29
4-3 滴塗之 MnO2/ZnO/ITO分析 ................................ ................................ ...... 29
4-3-1 奈米結構分析 ................................ ................................ ................... 29
4-3-2 電化學掃描速率分析 電化學掃描速率分析 ................................ ................................ ....... 30
4-3-3靈敏度分析 ................................ ................................ ........................ 30
4-3-4 干擾物分析 ................................ ................................ ....................... 31
4-3-5 檢測極限分析 ................................ ................................ ................... 31
4-4 研究成果比較 ................................ ................................ .............................. 32
第五章 結論與未來展望 ................................ ................................ ........................... 33
5-1 結論 ................................ ................................ ................................ .............. 33
5-2 未來展望 ................................ ................................ ................................ ...... 34
參考文獻 ................................ ................................ ................................ ..................... 35
附圖 ................................ ................................ ................................ ............................. 40
附表 ................................ ................................ ................................ ............................. 76
參考文獻 References
[1] 世界衛生組織,“糖尿病”, 2016 。
[2] Dayakar, T., et al. "Novel synthesis and characterization of Ag@ TiO2 core shell nanostructure for non-enzymatic glucose sensor." Applied Surface Science 435 (2018): 216-224.
[3] Damborský, Pavel, Juraj Švitel, and Jaroslav Katrlík. "Optical biosensors." Essays in biochemistry 60.1 (2016): 91-100.
[4] Norton, David P., et al. "ZnO: growth, doping & processing." Materials today 7.6 (2004): 34-40.
[5] Liang, Zhen, and Xiaojun Zhang. "Zn–ZnO@ TiO2 nanocomposite: a direct electrode for nonenzymatic biosensors." Journal of Materials Science 53.10 (2018): 7138-7149.
[6] Pietruszka, R., et al. "New efficient solar cell structures based on zinc oxide nanorods." Solar Energy Materials and Solar Cells 143 (2015): 99-104.
[7] Voss, Tobias, and Siegfried R. Waldvogel. "Hybrid LEDs based on ZnO nanowire structures." Materials Science in Semiconductor Processing 69 (2017): 52-56.
[8] Askari, Mohammad Bagher, et al. "Synthesis of TiO2 nanoparticles and decorated multi-wall carbon nanotube (MWCNT) with anatase TiO2 nanoparticles and study of optical properties and structural characterization of TiO2/MWCNT nanocomposite." Optik-International Journal for Light and Electron Optics 149 (2017): 447-454.
[9] Haider, Adawiya J., et al. "Exploring potential environmental applications of TiO2 nanoparticles." Energy Procedia 119 (2017): 332-345.
[10] Feng, Lili, et al. "MnO2 prepared by hydrothermal method and electrochemical performance as anode for lithium-ion battery." Nanoscale research letters 9.1 (2014): 290.
[11] Ahmad, Khursheed, Akbar Mohammad, and Shaikh M. Mobin. "Hydrothermally grown α-MnO2 nanorods as highly efficient low cost counter-electrode material for dye-sensitized solar cells and electrochemical sensing applications." Electrochimica Acta 252 (2017): 549-557.
[12] Bai, Xianlin, et al. "Hierarchical multidimensional MnO2 via hydrothermal synthesis for high performance supercapacitors." Electrochimica Acta (2018).
[13] Zeng, Zheng, et al. "Uniformly electrodeposited α-MnO2 film on super-aligned electrospun carbon nanofibers for a bifunctional catalyst design in oxygen reduction reaction." Electrochimica Acta 256 (2017): 232-240.
[14] Usha, V., et al. "Effect of catalysts on the synthesis of CuO nanoparticles: structural and optical properties by sol–gel method." Superlattices and Microstructures 86 (2015): 203-210.
[15] Gao, Shitao, et al. "Micromorphology and structure of pyrolytic boron nitride synthesized by chemical vapor deposition from borazine." Ceramics International 44.10 (2018): 11424-11430.
[16] Li, Zhenqing, et al. "Alignment and counting of mitochondria based on capillary electrophoresis." Sensors and Actuators B: Chemical 265 (2018): 110-114.
[17] Babu, Eadi Sunil, et al. "Effects of growth pressure on morphology of ZnO nanostructures by chemical vapor transport." Chemical Physics Letters 658 (2016): 182-187.
[18] Alvi, N. H., et al. "Influence of different growth environments on the luminescence properties of ZnO nanorods grown by the vapor–liquid–solid (VLS) method." Materials Letters 106 (2013): 158-163.
[19] Chang, Tai-Hsun, et al. "Formation of urchin-like CuO structure through thermal oxidation and its field-emission lighting application." Journal of Alloys and Compounds 644 (2015): 324-333.
[20] 莊達人 ,“VLSI製造技術 製造技術 ”,高立圖書股份有限公司 ,1995。
[21] Iwata, K., et al. "ZnO growth on Si by radical source MBE." Journal of Crystal Growth 214 (2000): 50-54.
[22] Sun, Ye, Gareth M. Fuge, and Michael NR Ashfold. "Growth of aligned ZnO nanorod arrays by catalyst-free pulsed laser deposition methods." Chemical Physics Letters 396.1-3 (2004): 21-26.
[23] Nosker, R. W., P. Mark, and J. D. Levine. "Polar surfaces of wurtzite and zincblende lattices." Surface Science 19.2 (1970): 291-317.
[24] 施敏 、張俊彥 ,“半導體元件與物理製作技術 ”,高立圖書公司 ,1996。
[25] Zhou, Fan, et al. "Effects of the surface morphologies of ZnO nanotube arrays on the performance of amperometric glucose sensors." Materials Science in Semiconductor Processing 56 (2016): 137-144.
[26] Knoll, Max. "Aufladepotentiel und sekundäremission elektronenbestrahlter körper." Zeitschrift für technische Physik 16 (1935): 467-475.
[27] 羅聖全 ,“科學基礎之重要利器 科學基礎之重要利器 科學基礎之重要利器 科學基礎之重要利器 科學基礎之重要利器 -掃描式電子顯微鏡 掃描式電子顯微鏡 掃描式電子顯微鏡 掃描式電子顯微鏡 掃描式電子顯微鏡 (SEM) ”,科學研習 科學研習 科學研習 ,台 灣中央大學, 2013年 5月, pp.52。
[28] Lyman, Charles E., et al. Scanning electron microscopy, X-ray microanalysis, and analytical electron microscopy: a laboratory workbook. Springer Science & Business Media, 2012.
[29] 林麗娟 ,“X光繞射原理及其應用 光繞射原理及其應用 ”,工業材料雜誌 ,86期,1994年 2月, pp.101-102.
[30] Rahman, Md Mahbubur, et al. "A comprehensive review of glucose biosensors based on nanostructured metal-oxides." Sensors 10.5 (2010): 4855-4886.
[31] Bard, Allen J., and Larry R. Faulkner. "Fundamentals and applications." Electrochemical Methods 2 (2001): 482.
[32] Al-Mokaram, Ali, et al. "The development of non-enzymatic glucose biosensors based on electrochemically prepared polypyrrole–chitosan–titanium dioxide nanocomposite films." Nanomaterials 7.6 (2017): 129.
[33] Si, Peng, et al. "A hierarchically structured composite of Mn3O4/3D graphene foam for flexible nonenzymatic biosensors." Journal of Materials Chemistry B 1.1 (2013): 110-115.
[34] Krzywiecki, M., et al. "X-ray Photoelectron Spectroscopy characterization of native and RCA-treated Si (111) substrates and their influence on surface chemistry of copper phthalocyanine thin films." Thin Solid Films 518.10 (2010): 2688-2694.
[35] Chen, Jin, Wei-De Zhang, and Jian-Shan Ye. "Nonenzymatic electrochemical glucose sensor based on MnO2/MWNTs nanocomposite." Electrochemistry Communications 10.9 (2008): 1268-1271.
[36] Farid, Mohammad Masoudi, et al. "Molecular imprinting method for fabricating novel glucose sensor: Polyvinyl acetate electrode reinforced by MnO2/CuO loaded on graphene oxide nanoparticles." Food chemistry 194 (2016): 61-67.
[37] Yang, Yu Jun, and Shengshui Hu. "Electrodeposited MnO2/Au composite film with improved electrocatalytic activity for oxidation of glucose and hydrogen peroxide." Electrochimica Acta 55.10 (2010): 3471-3476.
[38] Xiao, Fei, et al. "Growth of coral-like PtAu–MnO2 binary nanocomposites on free-standing graphene paper for flexible nonenzymatic glucose sensors." Biosensors and Bioelectronics 41 (2013): 417-423.
[39] Xiao, Fei, et al. "Coating graphene paper with 2D-assembly of electrocatalytic nanoparticles: a modular approach toward high-performance flexible electrodes." Acs Nano 6.1 (2011): 100-110.
[40] Cui, Hui-Fang, et al. "Selective and sensitive electrochemical detection of glucose in neutral solution using platinum–lead alloy nanoparticle/carbon nanotube nanocomposites." Analytica chimica acta 594.2 (2007): 175-183.
[41] Holt-Hindle, Peter, et al. "Amperometric glucose sensor based on platinum– iridium nanomaterials." Electrochemistry Communications 10.10 (2008): 1438-1441.
[42] Cheng, Ta-Ming, et al. "(110)-exposed gold nanocoral electrode as low onset potential selective glucose sensor." ACS applied materials & interfaces 2.10 (2010): 2773-2780.
[43] Bai, Yu, et al. "Enzyme-free glucose sensor based on a three-dimensional gold film electrode." Sensors and Actuators B: Chemical 134.2 (2008): 471-476.
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:自定論文開放時間 user define
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus: 已公開 available


紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code