Responsive image
博碩士論文 etd-0628118-220403 詳細資訊
Title page for etd-0628118-220403
論文名稱
Title
封端劑及鍛燒對氧化鎢奈米結構之影響並應用於乙醇氣體感測器之研究
Effects of Capping Agent and Calcination on Morphology of Tungsten Oxide Nanostructures for Ethanol Gas Sensing Applications
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
102
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2018-07-24
繳交日期
Date of Submission
2018-07-28
關鍵字
Keywords
氧化鎢、封端劑、鍛燒、乙醇氣體感測器、水熱法
ethanol gas sensor, tungsten oxide, hydrothermal synthesis, capping agent, calcination
統計
Statistics
本論文已被瀏覽 5638 次,被下載 1
The thesis/dissertation has been browsed 5638 times, has been downloaded 1 times.
中文摘要
本論文研究氧化鎢(WO3)之各種不同奈米結構,並以鍛燒使材料表面粗糙化,製作成乙醇氣體感測器。吾人先透過射頻濺鍍系統沉積WO3種子層,再以水熱法成長氧化鎢奈米片(WO3 nanosheets)。實驗過程中添加封端劑(Capping agent)及酸性物質,分別聚合成氧化鎢奈米板(WO3 nanoplates)及氧化鎢奈米磚(WO3 nanobricks)等結構。藉由在P型矽基板上生長氧化鎢奈米結構,形成PN異質接面元件來感測其對乙醇氣體響應值之大小,並對元件進行物性與電性的分析。本研究主要討論氧化鎢材料所聚集而成的多種奈米結構,透過鍛燒改變元件表面形貌,進而提升乙醇氣體感測器的響應值。
加入封端劑讓奈米材料更加直立,提高元件之比表面積。而鍛燒處理能使奈米材料表面粗糙化,有利於對乙醇氣體之感測。實驗結果顯示,添加封端劑所成長的氧化鎢奈米板元件(WO3 nanoplate/P-Si)在鍛燒過後,對於400ppm乙醇氣體的響應值高達245.4%,為未經鍛燒元件的兩倍。其響應時間與恢復時間則分別縮短至14秒與12秒。因此,直立奈米結構加上鍛燒所形成之粗糙化材料表面,有利於提升感測乙醇氣體之響應度。
Abstract
In this thesis, we discuss various nanostructures of tungsten oxide (WO3) and roughen the surface of nanomaterials with calcination for ethanol gas sensing applications. Firstly, the WO3 seed layer is deposited by RF sputtering system and the WO3 nanosheets are grown by hydrothermal synthesis. Capping agent and acid additive are added during the experiments to form WO3 nanoplates and WO3 nanobricks, respectively. Devices with p-n heterojunction are formed by growing WO3 nanostructures on p-type silicon substrates. The materials and the devices are investigated through different measurements to study their responses to ethanol gas. This research mainly discusses the aggregation of WO3 nanostructure and the surface morphology after calcination. The sensing ability of ethanol gas sensors are enhanced with additional processes.
Capping agent makes the nanomaterials more vertical and increases the surface-to-volume ratio of the devices. Calcination process roughens the surface of nanomaterials and is beneficial to gas detection. The experimental results show that the device fabricated with capping agent and calcination (WO3 nanoplate/P-Si) has a response of 245.4% to 400 ppm ethanol gas. This response value is twice higher than the sample without calcination. Besides, the response and the recovery times are shortened to 14 seconds and 12 seconds, respectively. As a result, vertical nanostructures and roughened surfaces have great potential to enhance the sensing response to ethanol gas.
目次 Table of Contents
誌謝................................................................................................................................. i
摘要................................................................................................................................ ii
Abstract ........................................................................................................................ iii
目錄............................................................................................................................... iv
表目錄.......................................................................................................................... vii
圖目錄........................................................................................................................ viii
第一章 緒論.................................................................................................................. 1
1-1 前言 ................................................................................................................................ 1
1-2 乙醇氣體介紹 ................................................................................................................ 1
1-3 乙醇感測器介紹 ............................................................................................................ 2
1-4 奈米結構 ........................................................................................................................ 3
1-5 氧化鎢 ............................................................................................................................ 3
1-5-1 氧化鎢的簡介與應用 ............................................................................................ 3
1-5-2 氧化鎢的感測原理 ................................................................................................ 4
1-6 論文架構 ........................................................................................................................ 5
第二章 理論分析.......................................................................................................... 6
2-1 粉末生長機制 ................................................................................................................ 6
2-1-1 水熱法 .................................................................................................................... 6
2-1-2 氧化鎢的製備 ........................................................................................................ 6
2-2 粉末形貌之改變 ............................................................................................................ 7
2-2-1 封端劑之影響 ........................................................................................................ 7
2-2-2 鍛燒之影響 ............................................................................................................ 7
2-3 氣體感測器工作原理 .................................................................................................... 8
2-3-1 工作溫度 ................................................................................................................ 8
2-3-2 PN異質接面氣體感測器 ....................................................................................... 9
2-3-3 乙醇氣體反應機制 .............................................................................................. 11
2-3-4 氣體響應度之定義 .............................................................................................. 11
2-4 薄膜成長儀器 .............................................................................................................. 13
2-4-1 射頻濺鍍機 .......................................................................................................... 13
2-4-2 熱蒸鍍機 .............................................................................................................. 14
2-5 量測儀器 ...................................................................................................................... 15
2-5-1 掃描式電子顯微鏡(SEM) .................................................................................... 15
2-5-2 X光繞射儀(XRD) ................................................................................................ 16
2-6 氣體量測系統 .............................................................................................................. 16
第三章 實驗步驟與量測機台.................................................................................... 18
3-1 材料選用 ...................................................................................................................... 18
3-2 感測器製程系統 .......................................................................................................... 19
3-2-1 射頻濺鍍系統 ...................................................................................................... 19
3-2-2 熱蒸鍍系統 .......................................................................................................... 19
3-3 感測器分析儀器與量測系統 ...................................................................................... 20
3-3-1 掃描式電子顯微鏡(SEM) .................................................................................... 20
3-3-2 能量散佈光譜儀(EDS) ........................................................................................ 20
3-3-3 X光粉末繞射儀(XRD) ........................................................................................ 21
3-3-4 氣體量測系統 ...................................................................................................... 21
3-4 製程步驟與成長參數 .................................................................................................. 22
3-4-1 矽基板清洗步驟 .................................................................................................. 22
3-4-2 濺鍍沉積氧化鎢薄膜種子層 .............................................................................. 23
3-4-3 水熱法生長氧化鎢奈米片結構........................................................................... 23
3-4-4 水熱法生長氧化鎢奈米板結構........................................................................... 23
3-4-5 水熱法生長氧化鎢奈米磚結構........................................................................... 24
3-4-6 蒸鍍鋁電極 .......................................................................................................... 25
第四章 結果與討論.................................................................................................... 26
4-1 物性分析 ...................................................................................................................... 26
4-1-1 氧化鎢水熱時間對形貌之比較........................................................................... 26
4-1-2 氧化鎢奈米片生長結果與分析........................................................................... 26
4-1-3 氧化鎢奈米板生長結果與分析........................................................................... 27
4-1-4 氧化鎢奈米磚生長結果與分析........................................................................... 28
4-2 奈米結構生長機制分析 .............................................................................................. 29
4-2-1 奧斯特瓦爾德熟成(Ostwald Ripening) ............................................................... 29
4-2-2 封端劑與添加劑之生長機制分析....................................................................... 29
4-3 電性分析與探討 .......................................................................................................... 30
4-3-1 氧化鎢奈米片元件之分析與探討....................................................................... 30
4-3-2 氧化鎢奈米板元件之分析與探討....................................................................... 31
4-3-3 氧化鎢奈米磚元件之分析與探討....................................................................... 32
4-4 元件動態響應與選擇性分析 ...................................................................................... 34
4-4-1 氧化鎢奈米片元件之分析 .................................................................................. 34
4-4-2 氧化鎢奈米板元件之分析 .................................................................................. 35
4-4-3 氧化鎢奈米磚元件之分析 .................................................................................. 35
4-5 最佳元件之探討 .......................................................................................................... 36
第五章 結論與未來展望............................................................................................ 37
5-1 結論 .............................................................................................................................. 37
5-2 未來展望 ...................................................................................................................... 38
參考文獻...................................................................................................................... 39
附表.............................................................................................................................. 43
附圖.............................................................................................................................. 46
參考文獻 References
[1] 工業安全衛生技術發展中心,“物質安全資料表”,財團法人工業技術研究院,序號49,Pages1。
[2] 潘信宏,陽明益,“燃料電池甲醇濃度感測器”,國家奈米元件實驗室奈米通訊,第二十二卷第二期,2015,Pages7-15。
[3] Yamazoe, N., Y. Kurokawa, and Tetsuro Seiyama. "Effects of additives on semiconductor gas sensors." Sensors and Actuators 4 (1983): 283-289.
[4] Takács, M., and A. E. Pap. "Gas sensitivity of sol-gel prepared mesoporous WO3 thin film." Procedia Engineering 168 (2016): 289-292.
[5] Ng, Chai Yan, Khairunisak Abdul Razak, and Zainovia Lockman. "Thermal oxidation of seeds for the hydrothermal growth of WO3 nanorods on ITO glass substrate." Thin Solid Films 595 (2015): 73-78.
[6] Fang, Yuanxing, et al. "Thickness control in electrophoretic deposition of WO3 nanofiber thin films for solar water splitting." Materials Science and Engineering: B 202 (2015): 39-45.
[7] Na, Hyungjoo, et al. "Low-temperature selective growth of tungsten oxide nanowires by controlled nanoscale stress induction." Scientific reports 5 (2015): 18265.
[8] Shen, Yi, et al. "Nanostructured WO3 films synthesized on mica substrate with novel photochromic properties." Journal of Alloys and Compounds 657 (2016): 450-456.
[9] Hai, Guojuan, et al. "Influence of oxygen deficiency on the synthesis of tungsten oxide and the photocatalytic activity for the removal of organic dye." Journal of Alloys and Compounds 690 (2017): 239-248.
[10] Zeng, Wen, He Zhang, and Zhongchang Wang. "Effects of different petal thickness on gas sensing properties of flower-like WO3• H2O hierarchical architectures." Applied Surface Science347 (2015): 73-78.
[11] Zhou, Junchen, et al. "Facile morphology control of WO3 nanostructure arrays with enhanced photoelectrochemical performance." Applied Surface Science 403 (2017): 274-281.
[12] Ahn, Sung Hoon, et al. "Effect of Interfacial Blocking Layer Morphology on the Solar Peroxydisulfate Production of WO3 Nanoflakes." Electrochimica Acta 244 (2017): 184-191.
[13] Wang, Chong, et al. "Nanosheets assembled hierarchical flower-like WO3 nanostructures: synthesis, characterization, and their gas sensing properties." Sensors and Actuators B: Chemical 210 (2015): 75-81.
[14] Kim, Hyo-Joong, and Jong-Heun Lee. "Highly sensitive and selective gas sensors using p-type oxide semiconductors: Overview." Sensors and Actuators B: Chemical 192 (2014): 607-627.
[15] Cao, Shixiu, et al. "Hydrothermal synthesis, characterization and gas sensing properties of the WO3 nanofibers." Materials Letters169 (2016): 17-20.
[16] Zhang, Hongwen, et al. "Tungsten oxide nanostructures based on laser ablation in water and a hydrothermal route." CrystEngComm 16.12 (2014): 2491-2498.
[17] Liu, Wenhua, et al. "Ultrafast fabrication of nanostructure WO3 photoanodes by hybrid microwave annealing with enhanced photoelectrochemical and photoelectrocatalytic activities." International Journal of Hydrogen Energy 43.18 (2018): 8770-8778.
[18] Wang, Yude, Jingbo Chen, and Xinghui Wu. "Preparation and gas-sensing properties of perovskite-type SrFeO3 oxide." Materials letters 49.6 (2001): 361-364.
[19] Sze, Simon M., and Kwok K. Ng. Physics of semiconductor devices. John wiley & sons, 2006.
[20] Neamen, Donald A. Semiconductor physics and devices. Vol. 3. New York: McGraw-Hill, 1997.
[21] Choi, Seungbok, et al. "Cr2O3 nanoparticle-functionalized WO3 nanorods for ethanol gas sensors." Applied Surface Science 432 (2018): 241-249.
[22] 蕭宏,“半導體製程技術導論”,歐亞書局有限公司,2001,Pages 458-461
[23] 莊達人,“VLSI製造技術”,高立圖書股份有限公司,1995。
[24] 楊雲凱,“物理氣相沉積 (PVD) 介紹”,國家奈米元件實驗室奈米通訊,第二十二卷第四期,2015,Pages 33-35。
[25] 羅聖全,“科學基礎之重要利器-掃描式電子顯微鏡(SEM) ”,科學研習,2013,Pages 52。
[26] 蔡坤龍,“X-射線技術於環境化學分析之應用”,環境檢驗電子報,第二十二期。
[27] 許樹恩,吳泰伯,“X光繞射原理與材料結構分析”,中國材料科學學會,1992。
[28] Chatterjee, Koustuv, David Dollimore, and Kenneth Alexander. "A new application for the Antoine equation in formulation development." International journal of pharmaceutics 213.1-2 (2001): 31-44.
[29] Thomson, George Wm. "The Antoine equation for vapor-pressure data." Chemical reviews 38.1 (1946): 1-39.
[30] Krzywiecki, M., et al. "X-ray Photoelectron Spectroscopy characterization of native and RCA-treated Si (111) substrates and their influence on surface chemistry of copper phthalocyanine thin films." Thin Solid Films 518.10 (2010): 2688-2694.
[31] Verma, Sudhir, et al. "Physical stability of nanosuspensions: investigation of the role of stabilizers on Ostwald ripening." International journal of pharmaceutics 406.1-2 (2011): 145-152.
[32] Li, Linzhi, et al. "Oxalic acid mediated synthesis of WO3• H2O nanoplates and self-assembled nanoflowers under mild conditions." Journal of Solid State Chemistry 184.7 (2011): 1661-1665.
[33] Yu, Ming-Ru, et al. "Performance evaluation of ZnO–CuO hetero junction solid state room temperature ethanol sensor." Materials Research Bulletin 47.7 (2012): 1713-1718.
[34] Zhao, Xiuqin, et al. "Dependence of the properties of hydrothermally grown ZnO on precursor concentration." Physica E: Low-dimensional Systems and Nanostructures 41.8 (2009): 1423-1426.
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:自定論文開放時間 user define
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus: 已公開 available


紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code