Responsive image
博碩士論文 etd-0628120-160000 詳細資訊
Title page for etd-0628120-160000
論文名稱
Title
以常壓化學氣相沉積法於不同晶面與表面形貌的藍寶石基板硒化二硒化鉑薄膜之電性特性分析
Synthesizing PtSe2 via APCVD selenization and exploring the effects of substrate orientations and surface morphologies on the electrical properties of PtSe2/Al2O3 heterostructures
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
97
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2020-07-27
繳交日期
Date of Submission
2020-07-28
關鍵字
Keywords
x射線光電子能譜、X射線反射繞射、藍寶石基版、霍爾效應、二維、單層、二硒化鉑、常壓化學氣相沉積法
X-ray reflectivity, Al2O3, Hall effect, APCVD, 2D, monolayer, PtSe2, photoelectron spectroscopy
統計
Statistics
本論文已被瀏覽 5646 次,被下載 41
The thesis/dissertation has been browsed 5646 times, has been downloaded 41 times.
中文摘要
過渡金屬二硫屬化物(transition metal dichalcogenides, TMDs)的化學式可表為MX2,其中M為第16族的硫族元素,例如硫、硒、碲;X為過渡金屬元素,例如鎢、鉬、鉑。二維的二硫屬化物的性質對於基板種類與其表面懸鍵、表面缺陷很敏感,因此有需要了解二硫屬化物與基板間介面的性質。在本論文研究中,我們將鉑(Pt)濺鍍在C、M、A三種晶面的單晶藍寶石基板(Al2O3)上,控制幾種濺鍍厚度後,再藉由常壓化學氣相沉積法(atmospheric pressure chemical vapor deposition, APCVD)將其硒化成不同厚度的二硒化鉑(PtSe2)薄膜。藉由拉曼光譜的結果可以確認二硒化鉑薄膜有成長在基板上,並得知薄膜厚度。X射線反射繞射量測(x-ray reflectivity, XRR)可得知薄膜厚度、粗糙度與密度;原子力顯微鏡可知表面形貌與粗糙度。以上種種量測結果顯示,本論文中生長的二硒化鉑薄膜層數介於單層至20層(單層厚度5.08埃)。層數較少會受到基板原子尺度台階(atomic terraces)影響,基板/薄膜、薄膜/空氣的介面粗糙度(RMS roughness, σRMS)介於約2~4埃;超過20層,基板台階影響效應消失,介面粗糙度則相較於層數較少的多一個數量級。若成長於M面藍寶石基版,即使薄膜成長層數超過40層,還是會受到基板退火造成的原子尺度波浪狀形貌影響,其表面粗糙度約為~ 60 - 80 Å。從霍爾電性量測可以知道,本研究成長的二硒化鉑薄膜的主要載子為電子,霍爾電子遷移率(hall mobility, μHall)為155 cm2V-1sec-1 ~ 4 cm2V-1sec-1;載子濃度(carrier concentration, CC)為1.79 x 1015 cm-3 ~ 5.84 x 1018 cm-3,較薄的薄膜有較高的載子遷移率與較低的載子濃度。從電阻率對溫度的量測結果可以了解,較厚薄膜的載子導電機制(carrier conduction mechanism)為二維變程跳躍(2D variable range hopping, 2D - VRH)。通過X射線光電子能譜(x-ray photoelectron spectroscopy, XPS)進一步研究了這些界面,以了解化學均勻性和界面能帶排列對觀察到的電性能的影響。
Abstract
Transition metal dichalcogenides (TMDs) are chemical compounds expressed in the form of MX2 where M is a transition metal atom while X is a group 16 chalcogenide atom like sulfur, selenium, or tellurium. The 2D nature of transition metal dichalcogenides (TMDs) makes it extremely sensitive to dangling bonds or surface imperfections from the substrates onto which they are grown. Thus it is imperative to understand this TMD/substrate interface’s effects on the electrical properties of 2D layers itself. Herein, we explore the physical properties of TMD – platinum diselenides (PtSe2) interfaces by selenizing Pt films of various thicknesses grown on single crystal sapphire (Al2O3) substrates of different orientations (C, M, and A). Raman spectroscopy reveals the 1T-PtSe2 phase is formed on all these substrates. Film thickness, composition and roughness is verified by X-Ray Reflectivity (XRR) and surface roughness is also probed by atomic force microscopy (AFM). These studies reveal on annealed C and A sapphire, PtSe2 films with thickness ranging from 1 L to 20 L (1 L = 5.08Å) mimic the substrate’s atomic terraces and the two interfaces – substrate/PtSe2 and PtSe2/air interfaces exhibiting RMS roughness (σRMS) of ~ 2 to 4 Å. Beyond 20 L, these atomic features vanish and σRMS for PtSe2/air increase by one order. On M sapphire, annealing creates a nanorippled/sawtooth surface, which in turn, is mimicked by the overlaying PtSe2 layers, even if film’s thickness is 40 L with σRMS ~ 60 - 80 Å. The effect of such varied morphological features on the electrical properties was probed using Hall Effect measurements which revealed (N) type conduction in all film’s behavior. The Hall mobility (μHall) and carrier concentration (CC) ranging from 155 cm2V-1sec-1 to 4 cm2V-1sec-1, and 1.79 x 1015 cm-3 to 5.84 x 1018 cm-3, respectively, with the thinnest layers showing the highest μHall and lowest CC. Based on temperature dependent resistivity results, the carrier conduction mechanism for thicker films was established to be 2D variable range hopping (2D - VRH). These interfaces are further studied by X-ray photoelectron spectroscopy (XPS) to understand the effect of chemical homogeneity and the interfacial band alignments on the observed electrical properties.
目次 Table of Contents
Oral examination certificate………………………………………………....………….i
摘要…………………………………………………………………………………….ii
Abstract…...……….…………………………………………………………………...iii
Table of Contents…………………………………………………………….…………v
List of Abbreviations…………………………………………………………………viii
Chapter 1 Introduction………………………………………………………………….1
1.1 Review of physical properties of TMDs, platinum diselenide (PtSe2)……. 1
1.2 Purpose of this work…………………………….…………………………12
Chapter 2 Growth of PtSe2 ….....................…………………………………………...13
2.1 Substrate preparation……...…………………………………………….....13
2.1.1 Cleaning…………………………..………………………………..13
2.1.2 Pre-Annealing….…………………………………………………..14
2.2 Deposition of platinum thin film and parameters………………………….17
2.2.1 Magnetron sputtering of films……………………………………..17
2.2.2 Sputtering parameter list for samples……………………………...18
2.3 Deposition of contacts …………………………………………………….19
2.3.1 Hall effect contacts………………………………………………...19
2.3.2 FET contacts……………………………………………………….21
2.4 Atmospheric Pressure Chemical Vapor Deposition (APCVD)…………....23
2.4.1 Description of APCVD…………………………………………….23
2.4.2 Explanation of our APCVD system..………………………………24
2.4.3 Selenization Process………………………………………………..28
Chapter 3 Characterization of thin films ………………………………………………32
3.1 X-ray reflectivity (XRR)…………………………………………………...32
3.1.1 Description of XRR………………………………………………...32
3.1.2 XRR data…………………………………………………...………36
3.2 Scanning electron microscopy (SEM) & Energy dispersive x-ray spectroscopy (EDX)........39
3.2.1 Description of SEM and EDX….…………………………………..39
3.2.1.1 SEM data…………………………………………………40
3.2.2 Description of EDX .……………………………………………….41
3.2.2.1 EDS data………………………………………………….42
3.3 Atomic force microscopy (AFM)………………………………………….43
3.3.1 Description of AFM.………………………………………………..43
3.3.2 AFM data…………………………………………………………...46
3.4 Raman spectroscopy......................................................48
3.4.1 Description of Raman………………………………………………48
3.4.2 Raman data…………………………………………………………51
3.5 X-ray Photoelectron Spectroscopy (XPS)………………………………….54
3.5.1 Description of XPS.………………………………………………...54
3.5.2 XPS data……………………………………………………………56
3.6 Magnetotransport measurements…………………………………………..58
3.6.1 Room temperature Hall effect measurement….……………………58
3.6.2 Temperature dependent resistivity… ………………………………63
Chapter 4 Discussion & Conclusion …………………………………………………...67
4.1 Conclusion....……………………………………………………………….67
4.2 Future Work..……………………………………………………………….68
Chapter 5 References…………………………………………………………………...69
Chapter 6 Appendix…………………………………………………………………….73
參考文獻 References
1. Kim, S. et al. High-mobility and low-power thin-film transistors based on multilayer MoS2 crystals. Nat. Commun. 3, (2012).
2. Ma, N. & Jena, D. Charge scattering and mobility in atomically thin semiconductors. Phys. Rev. X 4, 1–9 (2014).
3. Schwierz, F., Pezoldt, J. & Granzner, R. Two-dimensional materials and their prospects in transistor electronics. Nanoscale 7, 8261–8283 (2015).
4. Kang, K. et al. High-mobility three-atom-thick semiconducting films with wafer-scale homogeneity. Nature 520, 656–660 (2015).
5. Yan, M. et al. High quality atomically thin PtSe 2 films grown by molecular beam epitaxy . 2D Mater. 4, 045015 (2017).
6. Liu, T. et al. Crested two-dimensional transistors. Nat. Nanotechnol. 14, 223–226 (2019).
7. Yao, W. et al. Direct observation of spin-layer locking by local Rashba effect in monolayer semiconducting PtSe 2 film. Nat. Commun. 8, 1–6 (2017).
8. Ahmet Avsar, Alberto Ciarrocchi, Michele Pizzochero, Dmitrii Unuchek, O. V. Y. & A. K. Defect induced, layer-modulated magnetism in ultrathin metallic PtSe2. Nat. Nanotechnol. 14, 674–678 (2019).
9. Li, L. Fabrication and Physical Properties of Novel Two-dimensional Crystal Materials Beyond Graphene: Germanene, Hafnene and PtSe2. (Springer Singapore, 2020).
10. Wang, Y. et al. Monolayer PtSe2, a New Semiconducting Transition-Metal-Dichalcogenide, Epitaxially Grown by Direct Selenization of Pt. Nano Lett. 15, 4013–4018 (2015).
11. A.K. Geim, K. S. N. The rise of graphene. Nat. Mater. 6, 183–191 (2007).
12. Zeng, L. H. et al. Fast, Self-Driven, Air-Stable, and Broadband Photodetector Based on Vertically Aligned PtSe2/GaAs Heterojunction. Adv. Funct. Mater. 28, (2018).
13. Jiang, W. et al. Large‐area high quality PtSe 2 thin film with versatile polarity. InfoMat. 1, 260–267 (2019).
14. Kandemir, A. et al. Structural, electronic and phononic properties of PtSe2: From
monolayer to bulk. Semicond. Sci. Technol. 33, (2018).
15. Chia, X. et al. Layered Platinum Dichalcogenides (PtS2, PtSe2, and PtTe2) Electrocatalysis: Monotonic Dependence on the Chalcogen Size. Adv. Funct. Mater. 26, 4306–4318 (2016).
16. Wang, Y. et al. Monolayer PtSe<inf>2</inf>, a New Semiconducting Transition-Metal-Dichalcogenide, Epitaxially Grown by Direct Selenization of Pt. Nano Lett. 15, 4013–4018 (2015).
17. Sojkova, M. et al. High carrier mobility epitaxially aligned PtSe2 films grown by one-zone selenization. (2020).
18. Yim, C. et al. High-Performance Hybrid Electronic Devices from Layered PtSe2 Films Grown at Low Temperature. ACS Nano 10, 9550–9558 (2016).
19. Zhao, Q. et al. Elastic, electronic, and dielectric properties of bulk and monolayer ZrS2, ZrSe2, HfS2, HfSe2 from van der Waals density-functional theory. Phys. Status Solidi Basic Res. 254, (2017).
20. Zhao, X. et al. Steady semiconducting properties of monolayer PtSe2 with non-metal atom and transition metal atom doping. Phys. Chem. Chem. Phys. 22, 5765–5773 (2020).
21. Wu, P. C., Yang, C. L., Du, Y. & Lai, C. H. Scalable Epitaxial Growth of WSe2 Thin Films on SiO2/Si via a Self-Assembled PtSe2 Buffer Layer. Sci. Rep. 9, 1–10 (2019).
22. Kar, M., Sarkar, R., Pal, S. & Sarkar, P. Engineering the magnetic properties of PtSe 2 monolayer through transition metal doping. J. Phys. Condens. Matter 31, (2019).
23. Xie, J. et al. Optical properties of chemical vapor deposition-grown PtSe2 characterized by spectroscopic ellipsometry. 2D Mater. 6, (2019).
24. O’Brien, M. et al. Raman characterization of platinum diselenide thin films. 2D Mater. 3, (2016).
25. Ye, S. & Oh, W. C. Demonstration of enhanced the photocatalytic effect with PtSe2 and TiO2 treated large area graphene obtained by CVD method. Mater. Sci. Semicond. Process. 48, 106–114 (2016).
26. Curiotto, S. & Chatain, D. Surface morphology and composition of c-, a- and m-sapphire surfaces in O2 and H2 environments. Surf. Sci. 603, 2688–2697 (2009).
27. Gabai, R., Ismach, A. & Joselevich, E. Nanofacet Lithography: A New Bottom-Up Approach to Nanopatterning and Nanofabrication by Soft Replication of Spontaneously Faceted Crystal Surfaces. Adv. Mater. 19, (2007).
28. Björck, M. & Andersson, G. GenX: An extensible X-ray reflectivity refinement program utilizing differential evolution. J. Appl. Crystallogr. 40, 1174–1178 (2007).
29. Halbleiter. Deposition: Chemical Vapor Deposition. Semiconductor Technology from A to Z (2020). doi:10.1145/859418.859419
30. Jimenez-Villacorta, F. Basic Principles of X-ray Reflectivity in Thin Films. (2011).
31. Yasaka, M. X-ray thin-film measurement techniques. Rigaku J. 26, 9 (2010).
32. Han, S. S. et al. Horizontal-to-Vertical Transition of 2D Layer Orientation in Low-Temperature Chemical Vapor Deposition-Grown PtSe 2 and Its Influences on Electrical Properties and Device Applications. ACS Appl. Mater. Interfaces 11, 13598–13607 (2019).
33. Veeco. Dimension 3100 Manual NanoScope Software Version 5 004-320-000 ( standard ) Document Revision History : DImension 3100 Manual. 000, 4–356 (2004).
34. Horiba. What is Raman Spectroscopy? (2020).
35. Materials, C. for solid state and new. Institute of Physics Belgrade: Laboratory for micro-Raman scattering spectroscopy. 7 (2020). Available at: http://www.solid.ipb.ac.rs/facilities/lab_uraman/index.htm. (Accessed: 7th September 2020)
36. Shi, J. et al. Chemical Vapor Deposition Grown Large-Scale Atomically Thin Platinum Diselenide with Semimetal–Semiconductor Transition. ACS Nano 13, 8442–8451 (2019).
37. Wojdyr, M. Fityk: A general-purpose peak fitting program. (2010).
38. Mirabelli, G. et al. Effects of Annealing Temperature and Ambient on Metal/PtSe2 Contact Alloy Formation. ACS Omega 4, 17487–17493 (2019).
39. Malmsten, G.; Thorén, I.; Högberg, S.; Bergmark, J. -E.; Karlsson, S. -E.; Rebane, E. Selenium Compounds Studied By Means Of Esca. Phys. Scr. 3, 96 (2007).
40. Honeywell. Hall Effect Sensing and Application.
41. Ansari, L. et al. Quantum confinement-induced semimetal-to-semiconductor evolution in large-area ultra-thin PtSe2 films grown at 400 °C. npj 2D Mater. Appl. 3, (2019).
42. Ovchinnikov, D., Allain, A., Huang, Y. S., Dumcenco, D. & Kis, A. Electrical
transport properties of single-layer WS2. ACS Nano 8, 8174–8181 (2014).
43. G. He, K. Ghosh, U. Singisetti, H. Ramamoorthy, R. Somphonsane, G. Bohra, M. Matsunaga, A. Higuchi, N. Aoki, S. Najmaei, Y. Gong, X. Zhang, R. Vajtai, P. Ajayan, J. B. Conduction Mechanisms in CVD-Grown Monolayer MoS2 Transistors: From Variable-Range Hopping to Velocity Saturation. Nano Lett. 15, (2015).
44. Noh, H. et al. Linear temperature dependence of conductivity in the apparent insulating regime of dilute two-dimensional holes in GaAs. Phys. Rev. B - Condens. Matter Mater. Phys. 68, 10–12 (2003).
45. Altshuler, B. L., Maslov, D. L. & Pudalov, V. M. Metal-insulator transition in 2D: Resistance in the critical region. Phys. E Low-Dimensional Syst. Nanostructures 9, 209–225 (2001).
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:校內校外完全公開 unrestricted
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus: 已公開 available


紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code