Responsive image
博碩士論文 etd-0629101-071404 詳細資訊
Title page for etd-0629101-071404
論文名稱
Title
Abscisic acid 對蝴蝶蘭開花之影響及日長對朵麗蘭葉片之 protein pattern 及開花影響之研究
Abscisic acid affects flowering in Phalaenopsis hybrida and effect of daylength on protein pattern and flowering in Doritis pulcherrima
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
49
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2000-06-26
繳交日期
Date of Submission
2001-06-29
關鍵字
Keywords
短日照、朵麗蘭、蝴蝶蘭、開花、離層酸
Phalaenopsis hybrida, short day, flowering, Abscisic acid, floral initiation, Doritis pulcherrima
統計
Statistics
本論文已被瀏覽 5674 次,被下載 23
The thesis/dissertation has been browsed 5674 times, has been downloaded 23 times.
中文摘要
第一章 ABA對蝴蝶蘭開花之影響
本研究使用 hexadeuterated abscisic acid (d6-ABA) 為內部標準 ( internal standard ),以 gas chromatography-mass spectrometry-selected ion monitoring 分析蝴蝶蘭 Phalaenopsis hybrida ( cv. TS 340 ) 之休眠芽、葉、根部及花梗的ABA含量。結果顯示,葉內游離態及結合態的ABA均比根部少很多,休眠芽內之游離態ABA含量也頗高。但不論2-3 公分長或7-10公分長的花梗,則無法偵測到游離態及結合態ABA。比較休眠期(生長於28℃)與已抽花梗的 P. hybrida 內生ABA含量,前者根部的游離態ABA較高,而結合態ABA較低。葉部則不論結合態或游離態ABA,均是休眠期稍高於已抽花梗之生長期。另外,外加 0.1或 1 µg ABA /株 於植株都有抑制抽花梗的現象,且以 1 µg ABA /株 的表現尤甚。由此推測,根及休眠芽內游離態ABA含量的降低應與休眠芽之活化及花梗發育有關。
第二章 日長對朵麗蘭蛋白質合成及開花之影響
朵麗蘭 ( Doritis pulcherrima Lindley cv. S94-3345 ) 成株栽培於塑膠盆,分別以9小時(短日照)及16小時(長日照)之光照處理。9小時之光照採室外條件(平均日/夜溫30/20℃),長日條件則除了9小時之自然日照外補加7小時光照處理。7小時之補光條件是在生長箱內用14µmol,m-2 s-1 photosynthetic photon flux之照度處理。短日處理30或40天後,有90%的植株分別長出2-3公分及7-10公分的花梗;相反的長日處理的植株,僅有10%抽出花梗。以一維電泳分析比較長日、短日條件下成熟葉片的蛋白質發現短日處理的葉片有分子量21 kDa及103 kDa的蛋白質,而長日處理的葉片則無。再用花梗長7-10公分的植株(有4到5個芽原體)之葉片以二維電泳分析,確定此二蛋白質的分子量及pI值分別是21 kDa ( pI 5.2 ) 及103 kDa ( pI 5.6 )。我們推測,這二個蛋白質或許與朵麗蘭之抽花梗有關。P21蛋白質之定序結果,顯示此蛋白質可能與Arabidopsis thaliana的細胞分裂相關蛋白有關聯。我們判斷,朵麗蘭為兼性短日照植物( facultative short day plant ),其日照長度對開花之誘導應與葉部蛋白質的變化有關。
Abstract
Influence of absicisic acid on flowering in Phalaenopsis hybrida
Abscisic acid (ABA) in the buds (or flowering shoots) , leaves and roots of Phalaenopsis hybrida (cv. TS 340) was identified and quantified by gas chromatography-mass spectrometry- selected ion monitoring using hexadeuterated ABA as an internal standard. Leaves contained much lower levels of both free and bound ABA than did roots. Dormant buds contained a relatively higher level of free ABA, whereas no detectable free or bound ABA was found in flowering shoots either at a length of 2 to 3 cm or 7 to 10 cm. Dormant stage P. hybrida ( grown at 28℃ ), levels of free ABA in the roots were higher than those in plants with flowering shoots, the levels of bound ABA in roots exhibited opposite tendency. Free and bound ABA in leaves was slightly increased in plants with flowering shoots as compared to those in the dormant stage. In addition, exogenous ABA application at 0.1 or 1 µg per plant inhibited initiation of flowering shoots, especially at 1µg per plant. These results suggest the decrease in the free ABA contents in the roots and buds, but not in the leaves, is correlated with bud activation and development of flowering shoots.

Protein synthesis and flowering in Doritis pulcherrima in relation to daylength
Mature doritis plants (Doritis pulcherrima Lindley cv. S84 -3345) were cultured in plastic pots with 9-h (short-day, SD) and 16-h (long-day, LD) photoperiods, respectively. The main 9-h light period was under field conditions (30 ℃ day/20 ℃ night on average). The supplemental 7-h light conditions for the LD was in chambers with 14 μmol. m-2 s-1 photosynthetic photon flux. When transferred to SD for 30 or 40 days the plants initiated flower spikes (90 % of the total plants) between 2.0 to 3.0 cm and 7.0 to 10.0 cm in length, respectively. In contrast, only 10 % of the plants producing flowering shoots were observed under LD conditions. Unique 21 and 103 kDa proteins were evident in one-dimensional electrophoresis of proteins from mature leaves under SD conditions. Two-dimensional gel electrophoresis confirmed that clear polypeptide spots with a molecular mass of 21 kDa at isoelectric point of 5.2 and 103 kDa at isoelectric point of 5.6 accumulated in leaves when flowering shoot reached 7.0 to 10.0 cm (4 to 5 flowe4 primordia apparent). Possibly, the 21 and 103 kDa proteins play the important role during initiation of flowering shoot in doritis. Polypeptide sequencing of P21 suggested a possible relationship to the product of cell division-like protein in Arabidopsis thaliana. It is clear that doritis is a facultative SD plant, and photoperiodic induction of its flowering is closely associated with changes of protein synthesis in its leaves.
目次 Table of Contents
第一章 ABA對蝴蝶蘭開花之影響---------------------------------------1
中文摘要 --------------------------------------------------------------- 2
英文摘要 --------------------------------------------------------------- 3
前 言 --------------------------------------------------------------- 5
材料與方法 ------------------------------------------------------------ 9
結果與討論 ------------------------------------------------------------ 13
圖 表 --------------------------------------------------------------- 18
參考文獻 --------------------------------------------------------------- 20

第二章 日長對朵麗蘭蛋白質合成及開花之影響----------------------25
中文摘要 --------------------------------------------------------------- 26
英文摘要 --------------------------------------------------------------- 27
前 言 --------------------------------------------------------------- 29
材料與方法 ------------------------------------------------------------ 32
結果與討論 ------------------------------------------------------------ 38
圖 表 --------------------------------------------------------------- 41
參考文獻 --------------------------------------------------------------- 46

參考文獻 References
第一章 ABA對蝴蝶蘭開花之影響

李哖、林菁敏 1984. 溫度對白花蝴蝶蘭生長發育與開花之影響.
  中國園藝 34(1):223-231.

李哖、林菁敏 1987. 蝴蝶蘭之花期調節 園藝作物產期調節研討會專集. 台中區農業改良場特刊第十號PP.27-44

李嘉慧 1990. 蝴蝶蘭形態解剖及光度、花芽發育對碳水化合物含量之影響. 國立臺灣大學園藝學研究所碩士論文

林育如 1994. 光、溫度與生長調節劑對蝴蝶蘭生長與開花之影響. 國立臺灣大學園藝學研究所碩士論文

林讚標 1988. 台灣蘭科植物. 南天出版社

蝴蘭蘭栽培手冊 1989. 台灣糖業公司、農務處和糖研究所合編

Bianco-Trinchant, J., Barthe, P. and Le Page-Degivry, M.T. 1999. ABA dynamics during the growth cycle of Amaranthus tricolor: Release of low and high molecular weight ABA conjugates in the culture medium. J. Plant Physiol. 154: 401- 403.

Chen, W. S., Chang, H.W., Chen, W.H. and Lin, Y.S. 1997. Gibberellic acid and cytokinin affect Phalaenopsis flower morphology at high temperature. Hort. Sci. 32:1069-1073.

Chen, W. S., Liu, H. Y., Lin, Z. H., Yang, L. and Chen, W. H. 1994. Gibberellin and temperature influence carbohydrate content and flowering in Phalaenopsis. Physiol. Plant. 90: 391-395.

Chou, C.C., Chen, W. S., Huang, K. L., Yu, H C. and Liao, L. J. 2000. Changes in cytokinin levels of Phalaenopsis leaves at high temperature. Plant Physiol. Biochem. 38: 309-314.

Dorffling, K. 1976. Correlative bud inhibition and abscisic acid in Acer Pseudoplatanus and Syringa vulgaris. Physiol. Plant. 38: 319-322.

EI-Antably, H. M. M., Wareing, P. F. and Hillman, J. 1967. Some physiological responses to D,L abscisin ( Dormin ). Planta 73: 74-70.

Kim, K., Davelaar, E. and Klerk, G. D. 1994. Abscisic acid controls dormancy development and bulb formation in lily plantlets regenerated in vitro. Physiol. Plant. 90: 59-64.

Lee, N. and Lin, G. M. 1984. Effect of temperature on growth and flowering of phalaenopsis white hybrid. J. Chinese Soc. Hort. Sci. 30: 23-231.

Maeda, T., Asami, T., Yoshida, S. and Takeno, K. 2000. The processes inhibited and promoted by abscisic acid in photoperiodic flowering of Pharbitis nil. J. Plant Physiol. 157: 421-427.

Milborrow, B. V. 1967. The identification of (+) dormin in plants and measurements of its concentrations. Planta 76: 93-113.

Milborrow, B. V. 1983. Pathway to and from abscisic acid, in: F. T. Addicott (ed.).abscisic Acid. Praeger, New York. pp. 79-112.

Nagar, P. K. 1995. Changes in absicisic acid, phenols and indoleacetic acid in bulbs of tuberose ( Poliamthes tuberosa L.) during dormancy and sprouting. Scientia Hort. 63: 77-82.

Okubo, H., Chijiwa, W. and Uemoto, S. 1988. Seasonal changes in leaf emergence from scale bulblets during scaling and endogenous plant hormone levels in Easter lily ( Lilium longiflorum Thunb.). J. Fac.Agric. Kyushu Univ. 33: 9-15.

Pierce, M. and Raschke, K. 1981. Synthesis and metabolism of abscisic acid in detached leaves of Phaseolus Vulgaris L. after loss and recovery of turgor. Planta 153: 156-165.

Powell, L. E. 1987. Hormonal aspects of bud and seed dormancy in temperate-zone woody plants. HortScience 22: 845-850.

Rivier, L., Milon, H. and Pilet, P. E. 1977. Gas chromatography-mass spectrometric determination of abscisic acid levels in the cap and the apex of maize roots. Planta 134: 23-27.

Robinson, T. L. and Barritt B. H. 1990. Endogenous abscisic acid concentrations, vegetative growth, and water relations of apple seedlings following PEG-induced water stress. J. Amer. Soc. Hort. Sci.115: 991-999.

Sakanishi, Y., Imamishi, H. and Ishida, G. 1980. Effect of temperature on growth and flowering of Phalaenopsis. Bull. Univ. Osaka Pref. Ser. B. 32:1-9.

Su, W. R., Chen, W. S., Koshioka, M., Mander, L. N., Hung, L. S., Chen, W. H., Fu, Y. M. and Huang, K. L. 2001. Changes in gibberellin levels in the flowering shoot of Phalaenopsis hybrida under high temperature conditions when flower development is blocked. Biochem. 39: 45-50.

Takeno, K. and Maeda, T. 1996. Abscisic acid both promotes and inhibits photoperiodic flowering of pharbitis nil. Physiol. Plant. 98: 467-470.

Walton, D. C. 1980. Biochemistry and physiology of abscisic acid. Annu. Rev. Plant Physiol. 31: 453-489.

Wareing, P. F. and Saunders P. F. 1971. Hormones and dormancy. Annu. Rev. Plant Physiol. 22: 261- 288.

Wood, B. W. 1983. Changes in indoleacetic acid, abscisic acid, gibberellins, and cytokinins during budbreak in pecan. J. Amer. Soc. Hort. Sci. 108: 333-338.

Yamazaki, H., Nishijima, T., Yamato, Y., Hamano, M., Koshioka, M. and Miura, H. 1999. Involvement of abscisic acid in bulb dormancy of Allium wakegi Araki. Ⅱ. A comparison between dormant and nondormant cultivars. Plant Growth Regul. 29: 195-200.

Yamazaki, H., Nishijima, T. and Koshioka, M. 1995. Changes in abscisic acid content and water status in bulbs of Allium wakegi throughout the year. J. Japan. Soc. Hort. Sci. 64: 589-598.

Zeevaart, J. A. D. 1988. Metabolism and physiology of abscisic acid. Annu. Rev. Plant Physiol. or Plant Mol.Biol. 39: 439- 473.

Zhang, J., Schurr, U. and Davies, W. J. 1987. Control of stomatal behaviour by abscisic acid which apparently originates in the roots. J. Expt. Bot. 38 : 1174-1189.

第二章 日長對朵麗蘭蛋白質合成及開花之影響

Bassett, C. L., Nickerson, M. L., Cohen, R. A. and Rajeevan, M. S. 2000. Alternative transcript initiation and novel post-transcriptional processing of a leucine-rich repeat receptor-like protein kinase gene that responds to short-day photoperiodic floral induction in morning glory(Ipomoea nil) Plant. Mol. Biol. 43:43-58.

Bernier,G., Havelange, A., Houssa,A., Petitjean, A. and Lejeune, P. 1993. Physiological signals that induce flowering. Plant Cell. 5: 1147-1155.

Bradford, M.M. 1976. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle for protein-binding. Anal. Biochem. 72:248-254.

Childs, K. L., Cordonnier-Pratt, M. M., Pratt, L. H. and Morgan, P. W. 1992. Genetic regulation of development in Sorghum bicolor Ⅶ. ma3 flowering mutant lacks a phytochrome that predominates in green tissue. Plant Physiol. 99: 765-770.

Cockshull, K. E. 1984. The photoperiodic induction of flowering in short-day plants. In: D. Vince-Prue, B. Thomas and K. E. Cockshull, (eds.): Light and the Flowering process, pp 33-49. Academic Press, London.

Green, P. B., Havelange, A. and Bernier, G. 1991. Floral morphogenesis in Anagallis : Scanning-electron-micrograph sequences from individual growing meristems before, during, and after the transition to flowering. Planta 185: 502-512.

Hedley, C.L. 1974. Response to light intensity and day-length of two contrasting flower varieties of Antirrhinum majus L. J. Hort. Sci. 49: 105-112.

Jackson, S. and Thomas, B. 1997. Photoreceptors and signals in the photoperiodic control of development. Plant Cell Environ. 20: 790-795.

Kohli, R. K., Sawhney, N. and Sawhney, S. 1980. Photo-induced changes in proteins associated with floral induction in Amaranthus. Plant Cell Physiol. 21: 1483-1490.

Kopcewicz, J. and Tretyn, A. 1998. Physiological and cytochemical investigations on photoperiodic floral induction in Pharbitis nil. Flowering Newsletter 25: 26-35.

Laemmli, U. K. 1970. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227: 680-685.

Lee, I., Aukerman, J., Gore, S. L., Lohman, K. N., Michaelsi, S. D., Weaver,L. M., John, M. C., Feldmann, K. A. and Amasino, R. M. 1994. Isolation of LUMINIDEPENDENS: A gene involved in the control of flowering time in Arabidopsis. Plant Cell 6: 75-83.

Mastudaira, P. 1987. Sequence from picomole quantities of proteins electroblotted onto polyvinylidene difluoride membranes. J. Biol Chem. 262: 10035-10038.

Park, D. H., Somer, D. E., Kim, Y. S., Choy, Y. H. Lim, H. K., Soh, M. S. Kim, H. J., Kay, S. A. and Nam, H. G. 1999. Control of circadian rhythms and photoperiodic flowering by the Arabidopsis GIGANTEA gene. Science (Washington DC) 285:1579-1852.

Perilleux, C., Ongena, P. and Bernier, G. 1996. Changes in gene expression in the leaf of Lolium temulentum L. Ceres during the photoperiodic induction of flowering. Planta 220: 32-40.

Putterill, J., Robson, F., Lee, k., Simon, R. and Coupland, G. 1995. The CONSTANS gene of Arabidopsis promotes flowering and encodes a protein showing similarities to zin c finger transcription factors. Cell 80: 847-857.

Reed, J. W., Nagatani, A., Elich, T. D., Fagan, M. and Chory, J. 1994. Phytochrome A and phytochrome B have overlapping but distinct functions in Arabidopsis development. Plant Physiol. 104: 1139-1149.

Sato, S., Nakamura, Y., Kaneko,T., Katoh, T., Asamizu, E., Kotani, H., and Tabata, S. 2000. Structural analysis of Arabidopsis thaliana chromosome 5. X. Sequence features of the regions of 3,076,755 bp covered by sixty P1 and Tac clones. DNA Res. 7: 31-63.

Thomas, B. and Vince-Prue, D. 1995. Do long-day plants and short-day plants perceive daylength in the same way. Flowering Newsletter 20: 50-57.

Thomas, B. 1991.Phytochrome and photoperiodic induction. Physiol. Plant. 81:571-577.

Vince-Prue, D. 1975. Photoperiodism in plants. McGraw-Hill, Maidenhead. pp. 121-126.

Weller, J. L., Murfet, I. C. and Reid, J. B. 1997. Pea mutants with reduced sensitivity to far-red light define an important role for phytochrome A in day-length detection. Plant Physiol. 114:1225-1236.
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:校內公開,校外永不公開 restricted
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus:永不公開 not available

您的 IP(校外) 位址是 54.175.120.161
論文開放下載的時間是 校外不公開

Your IP address is 54.175.120.161
This thesis will be available to you on Indicate off-campus access is not available.

紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code