Responsive image
博碩士論文 etd-0629101-094707 詳細資訊
Title page for etd-0629101-094707
論文名稱
Title
暫態液晶量測技術用在電子晶片表面上局部熱傳之實驗研究
A STUDY OF LOCAL CONVECTIVE HEAT TRANSFER COEFFICIENTS ON SURFACES OF ELECTRONIC CHIPS BY THE TRANSIENT HEAT TRANSFER METHOD WITH THERMOCHROMIC LIQUID CRYSTAL
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
175
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2001-06-15
繳交日期
Date of Submission
2001-06-29
關鍵字
Keywords
局部熱傳係數、暫態液晶量測技術、液晶、晶片、微攝影機
transient heat transfer m, chips, liquid crystal
統計
Statistics
本論文已被瀏覽 5771 次,被下載 2244
The thesis/dissertation has been browsed 5771 times, has been downloaded 2244 times.
中文摘要
摘 要

本實驗研究主要著重於三個方向:(1)量測出單晶片於標準高度(20mm)時的上、前、後、側四表面隨雷諾數變化之熱傳係數分佈;(2)改變單晶片高度為10mm和30mm時對晶片表面熱傳效果的影響,並和標準高度的結果比較;(3)當晶片於陣列內之前後位置不同時熱傳效果的比較;實驗雷諾數範圍介於2000~10000之間,晶片組以3x4陣列的排列方式裝置於測試基板上。

我們利用相似理論來建立整個實驗模型,並假設實驗系統為半無窮區間之一維熱傳導的熱傳模式,使用暫態液晶量測技術,將液晶塗佈於晶片模型表面,接著以埋設於系統中之微攝影機拍攝液晶在實驗過程中變色的影像,搭配LCIA(Liquid Crystal Image Analysis)套裝軟體分析液晶變色情形和時間、溫度的關係,進而求得晶片表面上局部熱傳係數分佈及變化狀況。

實驗結果顯示:(1)整體來看,隨雷諾數增加且由於受到渦流作用,使得晶片上各表面的熱傳係數值也隨之提高;(2)比較單晶片上、前、後、側四面的平均熱傳係數(h),其中以上表面的 值最大,前表面和後表面的h值在低雷諾數時差異不大,於較高雷諾數時,前表面的 要比側表面來得大,後表面的 值最小;(3)改變第一塊晶片高度後,在Re=2175和3257時以高度10mm的熱傳效果最好,Re=4423時三個高度的效果差不多,Re=5535以後,高度30mm有較佳的熱傳效果,而第二塊和第三塊則是以高度30mm時的熱傳效果最好,10mm時最差;(4)當固定晶片高度為10mm和20mm時,以愈靠近測試風洞進口處的熱傳效果愈佳,但是當晶片高度為30mm時,前後位置對其熱傳效果的影響則不明顯。

本文利用LCIA軟體中十五個色層區間來呈現晶片表面上熱傳係數隨雷諾數變化的分佈情形,並以Fortran 90撰寫程式求得晶片於不同高度和前後位置時的線性迴歸關係,進而比較這些變化對熱傳效果的影響。

Abstract
Abstract

There are three focal points in this experimental study:(1)Change Reynolds number(Re) and measure the heat transfer coefficients on upper、back、side and front surfaces of a chip for standard height(20mm);(2)Influences of the surface heat transfer coefficients when change the heights of a chip to 10mm and 30mm , then compare with the results of a chip with standard height;(3)Compare the heat transfer effects of a chip on different positions of the testing region. The range of Re is 2000~10000 in this experiment and the chip sets are installed on the testing board with a 3x4 array.

According to similarity principles to setup whole experimental models;assume this experimental system is a semi-infinite region and its heat transfer model is one dimension;use the transient heat transfer method with thermochromic liquid crystal as the surface thermometer , then we assemble micro video cameras in the experimental system to obtain the color changing images on chip surfaces. The software , LCIA (Liquid Crystal Image Analysis) , is used to analysis the changed color and the temporal history of the surface temperatures to determine the local heat transfer coefficients on chip surfaces.

The results show:(1)The heat transfer coefficients on chip surfaces are increased with Re and effects of vortex;(2)Upper surface of the chip has the largest average heat transfer coefficient(h) , front surface and side surface have almost the same at lower Re , but at higher Re , of front surface is larger than side surface;back surface has the lowest ;(3)When change the height of the first chip to 10mm , it has the best heat transfer effects at Re=2175 and 3257;there is almost the same effects at Re=4423 with different heights(10mm , 20mm and 30mm) and from Re=5535 to 9973 , this chip has the best heat transfer effects at 30mm. Then change the heights of the second and third chips , there are the best heat transfer effects at 30mm and the lowest at 10mm;(4)When fix heights of the chips at 10mm and 20mm , there are more better heat transfer effects as chips more close to the entrance of the testing channel , but once the heights of chips are 30mm , the positions of chips on the testing region are not very important influences to heat transfer effects.

目次 Table of Contents
目錄
摘要…………………………………………………………………….…I
目錄…………………………………………………………………… .III
圖表目錄………………………………………………………………...V
符號說明……………………………………………………………...VIII
重要聲明………………………………………………………………..XI

第一章 研究背景和動機…….………………………………………….1

第二章 文獻回顧………………………………………………………..5
2-1:基板具突出物之流場及熱質傳相關文獻……………………………....5
2-2:PCB上晶片模組熱傳現象之相關文獻……………………………….…6
2-3:液晶量測及影像處理技術之相關文獻…………………………………8
2-4:研究重點…………………………………………………………………9

三、基本理論…………………………………………………………………….12
3-1:以相似理論建立實驗模型……………………………….…………….12
◎幾何相似……………………………………………………………...13
◎動力及運動相似……………………………………………………...14
◎紐賽特數( )的關係式(Correlation)……………………….15
3-2:液晶量測技術基本理論…………………………………………………16
◎液晶量測技術的穩態方法…………………………………………...16
◎液晶量測技術的暫態方法…………………………………………...17

四、實驗裝置及實驗步驟………………………………………………22
4-1:實驗裝置…………………………………………………………………22
◎ 晶片模型及測試區…………………………………………………22
(a)晶片模型………………………………………………………………………22
(b)安裝基板………………………………………………………………………22
(c)上蓋……………………………………………………………………………22
◎小型風洞……………………………………………………………...23
(a)主通道……………………………………………………………...…………..23
(b)擴散器……………………………………………………………….…………24
(c)流孔板………………………………………………………….………………24
◎加熱系統……………………………………………………………...25
◎數據擷取系統………………………………………………………...25
◎影像擷取系統……………………………………………………….26
4-2:實驗前的參數控制與量測……………………………………………….26
◎暫態液晶的校正……………………………………………………….26
◎風速控制及量測……………………………………………………….28
◎溫度量測……………………………………………………………….31
◎光源控制……………………………………………………………….32
4-3:實驗前置作業…………………………………………………………….32
4-4:實驗步驟………………………………………………………………….33

第五章 實驗結果討論與分析………………………………………….43
5-1:定高度下upper、back、side及front各面局部熱傳係數隨Re值變化的情形……………………………………………………………………...44
5-1-1:第一塊晶片(標準高度20mm)………………...……………………..………….44
5-1-2:第二塊晶片(標準高度20mm)…………………………...………..……………46
5-1-3:第三塊晶片(標準高度20mm)……………………………….…………………47
5-2:單晶片在變化高度後對熱傳係數分佈和效果的影響…………………...49
5-2-1:改變第一塊晶片的高度…………………………………………………………..49
5-2-2:改變第二塊晶片的高度……………………………………………………….….52
5-2-3:改變第三塊晶片的高度…………………………………………………….…….54
5-3:分別討論第一、二、三位置晶片在定高度下的熱傳係數比較…………...56
5-4:不準度分析(Analysis of Uncertainties)……………….………………….58

第六章 結論與建議…………………………………………………161
6-1:總結……………………………………………………………………….161
6-2:建議……………………………………………………………….………162

參考文獻……………………………………………………………….165
附錄A……………………………………………………………….….168
附錄B…………………………………………………………………..173



圖目錄

Figure 1-1 Intel Pentium iii 500E(0.18μm) and Pentium Celeron 500(0.25μm) on top view………………………………………………………………….3
Figure 1-2 Intel Pentium iii 500E(0.18μm) and Pentium Celeron 500(0.25μm) on side view…………………………………………………………………3
Figure 1-3 Thermal design power and temperature of Intel Pentium iii and Intel Pentium 4…………………………………………………………………4
Figure 1-4 Max. thermal power and max. die temperature of ………4
Figure 2-1 The flow-field sketch of two cubes on the plate board…………………11
Figure 2-2 There is a chip with different height on the testing board………….…….11
Figure 3-1 Typical-PCB…………………………………….………………………..21
Figure 3-2 Top view and side view of the testing channel and the schematic diagram
of the testing rig………………………………………...……………….…21
Figure 4-1 Overall view of the testing installation…………………………………...36
Figure 4-2 Shapes and sizes of the chip model………………………………………36
Figure 4-3 The model of the testing region………………………………………..…37
Figure 4-4 Cover of the testing channel……………………………...………………37
Figure 4-5 Main channel……………………………………..………………………38
Figure 4-6 Bellmouth opening…………………………….…………………………38
Figure 4-7 Orifice…………………………………………….………………………39
Figure 4-8 Heat exchanger…………………………………………………..……….39
Figure 4-9 1/3〞Color CMOS Camera and replaced camera lens…………………...40
Figure 4-10 Distribution of thermal-couples and default temperatures before the experimentation on the testing region……………………………………..40
Figure 4-11 Locations of 5 rows of thermal-couples in the testing region…………..41
Figure 4-12 Temperature distribution along flow direction for various Re………….42
Figure 5-1-1 The first chip height is 20mm and other chips height are 20mm……....63
Figure 5-1-2~ Figure 5-1-9 Distributions of heat transfer coefficients on upper、back、side and front surfaces of the chip for Re=2175~9973…………..64~71
Figure 5-1-10 Re-h chart of the first chip;the chip height is 20mm……………72
Figure 5-2-1 The second chip height is 20mm and other chips are 20mm……….….73
Figure 5-2-2~ Figure 5-2-9 Distributions of heat transfer coefficients on upper、back、side and front surfaces of the chip for Re=2175~9973………….74~81
Figure 5-2-10 Re-h chart of the second chip and the chip height is 20mm……..82
Figure 5-3-1 The third chip height is 20mm and other chips are 20mm………….….83
Figure 5-3-2~ Figure 5-3-9 Distributions of heat transfer coefficients on upper、back、side and front surfaces of the chip for Re=2175~9973…………..84~91
Figure 5-3-10 Re-h chart of the third chip and the chip height is 20mm….……92
Figure 5-4-1 The first chip height is 10mm and other chips are 20mm…….………..93
Figure 5-4-2~ Figure 5-4-9 Distributions of heat transfer coefficients on upper、back、side and front surfaces of the chip for Re=2175~9973………..94~101
Figure 5-4-10 Re-h chart of the first chip and the chip height is 10mm……...102
Figure 5-5-1 The first chip height is 30mm and other chips are 20mm……….……103
Figure 5-5-2~ Figure 5-5-9 Distributions of heat transfer coefficients on upper、back、side and front surfaces of the chip for Re=2175~9973………..104~111
Figure 5-5-10 Re-h chart of the first chip;the chip height is 30mm……..……112
Figure 5-6 Linear Regression for the first chip in different heights………….……..113
Figure 5-7-1 The second chip height is 10mm and other chips are 20mm…………114
Figure 5-7-2~ Figure 5-7-9 Distributions of heat transfer coefficients on upper、back、side and front surfaces of the chip for Re=2175~9973………..115~122
Figure 5-7-10 Re-h chart of the second chip and the chip height is 10mm……123
Figure 5-8-1 The second chip height is 30mm and other chips are 20mm…………124
Figure 5-8-2~ Figure 5-8-9 Distributions of heat transfer coefficients on upper、back、side and front surfaces of the chip for Re=2175~9973………..125~132
Figure 5-8-10 Re-h chart of the second chip and the chip height is 30mm……133
Figure 5-9 Linear regression for the second chip in different heights……….……..134
Figure 5-10-1 The third chip height is 10mm and other chips are 20mm…………..135
Figure 5-10-2~ Figure 5-10-9 Distributions of heat transfer coefficients on upper、back、side and front surfaces of the chip for Re=2175~9973………..136~143
Figure 5-10-10 Re-h chart of the third chip and the chip height is 10mm….....144
Figure 5-11-1 The third chip height is 30mm and other chips are 20mm….……….145
Figure 5-11-2~ Figure 5-11-9 Distributions of heat transfer coefficients on upper、back、side and front surfaces of the chip for Re=2175~9973………..146~153
Figure 5-11-10 Re-h chart of the third chip and the chip height is 30mm……..154
Figure 5-12 Linear regression for the third chip in different height……………..…155
Figure 5-13 The first、second、third position in the base board…………..………156
Figure 5-14 Re-htav for different positions of the testing chip and the height is 20mm……………………………………………………………………..157
Figure 5-15 Linear regression for different positions of the testing chip and the height is 20mm………………………………………………………….……….157
Figure 5-16 Schematics of the cross-sections of the flow pattern and the three dimensional sketch of the mean flow…………………….………………158
Figure 5-17 Re-htav for different positions of the testing chip and the height is 10mm………………………………………….………………………….159
Figure 5-18 Linear regression for different positions of the testing chip and the height is 10mm…………………………………………………………………..159
Figure 5-19 Re-htav for different positions of the testing chip and the height is 30mm………………………………….………………………………….160
Figure 5-20 Linear regression for different positions of the testing chip and the height is 30mm…………………………………………………………………..160
Figure 6-1 The package Mechanical specification of Intel Pentium 4 processor……………………………………………….…………………164
Figure A-1 Package dimensions of Intel Pentium III…………………………173
Figure A-2 Detail description of package dimensions for Intel Pentium III……173
Figure A-3 Package dimensions of Intel Pentium 4…………………………..174
Figure A-4 Description table for Intel Pentium 4……………………………..174
Figure A-5 Size description for AMD Athlon (Processor Model 4)…………...175

參考文獻 References
Reference

【1】A. Bar-Cohen, A.D. Kraus, and S.F. Davidson,“Thermal frontiers in the design and packaging of microelectronic equipment”,J. Mechanical Engineering, June 1983.
【2】L.T. Yeh,“Review of heat transfer technologies in electronic equipment”,
ASME J. Electronic Packaging, 1995, Vol.117, pp.333-339.
【3】R.J. Goldstein, S.Y. Yoo, and M.K. Chung,“Convective mass transfer form a square cylinder and its base plate”,Int. J. Heat Mass Transfer, 1990, Vol.33, No.1, pp.9-18.
【4】W.H. Schofield and E. Logan,“Turbulent shear flow over surface mounted obstacle”,ASME J. Fluids Engineering, 1990, Vol.112, pp.376-385.
【5】W.A. Eckerle, and J.K. Awad,“Effect of freestream velocity on the three dimensional separated flow region in front of a cylinder”,ASME J. Fluids Engineering, 1991, Vol.113, pp.37-44.
【6】M.K. Chyu, and V. Natarajan,“Local heat/mass transfer distributions on the surface of a wall-mounted cube”,ASME J. Heat Transfer, 1991, Vol.113, pp.851-857.
【7】S.Y. Yoo, R.J. Goldstein, and M.K. Chung,“Effects of angle of attack on mass transfer from a square cylinder and its base plate”,Int. J. Heat Mass Transfer, 1993, Vol.36, No.2, pp.371-381.
【8】E.R. Meinders, K. Hanjalic, and T.H. Van Der Meer,“Similarity and dissimila
-rity between the surface heat transfer and the flow structure in turbulent flows over surface-mounted cube”,Int. J. Heat Transfer, 1998, Vol.41, No.2, pp.335-346.
【9】E.M. Sparrow, J.E. Niethammer, and A.Chaboki,“Heat transfer and pressure drop characteristics of rectangular modules encountered in electronic equipment”, ASME, Journal of Heat Transfer, 1982, Vol.25, pp.961-973.
【10】E.M. Sparrow, A.A. Yanezmoreno, and D.R. Otis, Jr,“Convection heat transfer response to height differences in an array of block-like electronic components”,Int. J. Heat Mass Transfer, 1984, Vol.27, No.3, pp.469-473.
【11】B.H. Kang, and Y. Jaluria,“Mixed convection transport from a protruding heat source module on a vertical surface”, AIAA, Journal of Thermophysics and Heat Transfer, 1990, Vol.4, pp.384-390.
【12】C.H. Amon,“Heat transfer enhancement by flow destabilization in electronic chip configurations”, ASME, Journal of Electronic Packaging, 1994, Vol.116, pp.198-205.
【13】Y.P. Gan, Q.J. Deng, C.F. Ma, X.Y. Yuan, and D.Y. Cai,“Forced convection air cooling from electronic component arrays in a parallel plate channel”, IEEE Transactions On Components, Packaging, and Manufacturing Technology, 1996, Part A, Vol.19, No.2, pp.163-167.
【14】B.A. Jubran, S.A. Swiety, and M.A. Hamdan,“Convective heat transfer and pressure drop characteristics of various array configurations to simulate the cooling of electronic modules”, Int. J. Heat Mass Transfer, 1996, Vol.39, No.16 pp.3519-3529.
【15】W. Nakayama, and S.H. Park,“Conjugate heat transfer from a single surface-mounted block to forced convective air flow in a channel”, ASME, Journal of Heat Transfer, 1996, Vol.118, pp.301-309.
【16】黃鎮江,“以暫態液晶薄膜技術量測具多孔板擾流器之積體電路模擬裝置之熱傳特性(II)”, 1999, 行政院國家科學委員會專題研究計劃成果報告, 計劃編號:NSC-88-2212-E-216-004
【17】T.E. Cooper, R.J. Field, and J.F. Meyer,“Liquid crystal thermography and its application to the study of convective heat transfer”, ASME, Journal of Heat Transfer, 1975, pp.442-450.
【18】J.C. Simonich, and R.J. Moffat,“Liquid crystal visualization of surface heat transfer on a concavely curved turbulent boundary layer”, Journal of Engineering for Gas Turbulent and Power, 1984, Vol.106, pp.619-627.
【19】P.T. Ireland, and T.V. Jones,“The response time of a surface thermometer employing encapsulated thermochromic liquid crystals”, J. Physics E, 1987, Vol.20, pp.1195-1199.
【20】C. Camci, K. Kim, and S.A. Hippensteele,“A new hue capturing technique for the quantitative interpretation of liquid crystal image used in convective heat transfer studies”, ASME, J. Turbomachinary, 1992, Vol.114, pp.765-775.
【21】Von Wolfersdorf, R. Hoecker, and T. Sattelmayer,“A hybrid transient step-heat transfer measurement technique using heater foils and liquid crystal thermography”, ASME, Journal of Heat Transfer, 1993, Vol.115, pp.319-324.
【22】Z. Wang, P.T. Ireland, T.V. Jones, and R. Davenport,“A color image processing system for transient liquid crystal heat transfer experiments”, ASME, Journal Turbomachinery, 1996, Vol.118, pp.421-427.
【23】J.W. Baughn, J.E. Mayhew, M.R. Anderson, and R.J. Butler,“A periodic transient method using liquid crystals for the measurement of local heat transfer coefficients”, ASME, Journal of Heat Transfer, Technical Notes, 1998, Vol.120, pp.772-777.
【24】Frank Kreith, and Mark S. Bohn,“Principles of heat transfer”, Fifth edition, pp.262-263, and pp.475.
【25】R.J. Moffat,“Experimental heat transfer”, Keynote paper, Kn11, proc. 9 Int. Heat Transfer Conf., Jerusalem, 1990, Vol.1, pp.882-890.
【26】A. Valencia, M. Fiebig, and N.K. Mitra,“Influence of heat conduction on deter
-mination by liquid crystal thermography”, Experimental Heat Transfer, 1995, pp.271-279.
【27】R.E. Critoph, M.K. Holland, and M. Fisfer,“Comparisons of steady state and transient methods for measurement of local heat transfer in plate fin-tube heat exchangers using liquid crystal thermography with radiant heating”, Int. J. Heat and Mass Transfer, 1999, Vol.42, pp.1-12.
【28】R.L. Mott著, 葉偉成 譯,“Applied Fluid Mechanics”,“實用流體力學”,科技圖書股份有限公司81年1月.
【29】R. J. Moffat, “Described the uncertainties in experimental results” ,Experimental Thermal and Fluid Science, 1988, Vol.1, pp.3-17
【30】“Intel Pentium III Processor for the PGA370 Socket at 500 MHz to 1 GHz datasheet”, October 2000
【31】“Intel Pentium 4 Processor in the 423-pin Package at 1.30 GHz, 1.40 GHz, 1.50 GHz, and 1.70 GHz datasheet”, April 2001
【32】“AMD Athlon Processor Model 4 Data Sheet”, March 2001

電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:校內立即公開,校外一年後公開 off campus withheld
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus: 已公開 available


紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code