Responsive image
博碩士論文 etd-0629101-131503 詳細資訊
Title page for etd-0629101-131503
論文名稱
Title
Lu5Ir4Si10 及 Lu5Rh4Si10 之電荷密度波相變的比熱研究
Specific Heat Studies on the Charge-Density-Wave Transition of Lu5Ir4Si10 and Lu5Rh4Si10
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
58
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2001-06-27
繳交日期
Date of Submission
2001-06-29
關鍵字
Keywords
交流比熱法、電荷密度波
CDW, AC calorimetry
統計
Statistics
本論文已被瀏覽 5700 次,被下載 2573
The thesis/dissertation has been browsed 5700 times, has been downloaded 2573 times.
中文摘要
近年來,在3D結構Lu5Ir4Si10中電荷密度波的形成,已經由x-ray繞射實驗被觀測到。同時,由於在比熱量測上觀測到一很尖的尖狀突起異常現象而使得發生在Lu5Ir4Si10的電荷密度波相變被認為是一級相變,通常一級相變會伴隨有熱延遲現象,為了釐清這個問題,我們測量並分析了Lu5Ir4Si10的比熱結果。而事實上,在我們儀器的解析度範圍內,我們並沒有看到熱延遲現象;同時,由分析結果,我們認為Lu5Ir4Si10在形成電荷密度波時是以強耦合的作用力形成。
另外,我們也針對和Lu5Ir4Si10具相同結構同時也存在CDW相變的Lu5Rh4Si10進行了零磁場及磁場下的電阻,磁化率及比熱量測。不論是從電阻,磁化率或是比熱的結果,我們確實觀測到熱延遲現象,且當我們外加磁場到8 Tesla,此熱延遲現象仍不受磁場影響;此熱延遲的特性被認為是雜質阻塞了電荷密度波所造成的次穩態所形成的,同時我們也討論了造成此現象的可能性。
在比熱的量測上,我們是以截波光當熱源的交流比熱法來進行量測。另外,我們也討論了交流比熱法的量測原理及其他操作細節。
Abstract
Recently, the formation of charge density wave in 3D structure, Lu5Ir4Si10, had been observed in the X-ray diffraction experiment. At the same time, the transition in Lu5Ir4Si10 was thought to be first-order due to the spike-shaped anomaly in specific heat. The first-order transition usually accompanies with thermal hysteresis. In order to clarify this problem, we measure and analyze the specific heat result of Lu5Ir4Si10. As a matter of fact, we don’t observe the thermal hysteresis behavior within the resolution of our apparatus, and we think the formation of CDW in Lu5Ir4Si10 is strong interchain coupling.
In addition, we also perform the resistivity, magnetic susceptibility and specific heat measurements under zero and external field on the isostructure component Lu5Rh4Si10 for comparison, which has also been thought to undergo a CDW transition. We indeed observe the thermal hysteresis behavior no matter on resistivity, susceptibility or on specific heat results, and this phenomenon doesn’t have magnetic effects. The thermal hysteresis features in Lu5Rh4Si10 are attributed to the presence of metastable states due to the pinning of the CDW phase to impurities, and we also discuss some possibilities about it.
The specific heat measurement in our research is performed with an ac calorimetry, using chopped light as a heat source. The details of this technique are also discussed.
目次 Table of Contents
Abstract …………………………………………………………………………i
Table of Contents ……………………………………………………………….ii
List of Figures …………………………………………………………………..iv
List of Tables ……………………………………………………………………vi
Chapter Ⅰ : Introduction …………………………………………………….1
Chapter Ⅱ : Charge Density Wave ………………………………………….4
2.1 The formation of charge density wave ………………………4
2.2 Examples of CDW …………………………………………..6
2.3 Models of CDW ……………………………………………..8
Chapter Ⅲ : AC Calorimetry ………………………………………………..10
3.1 Introduction ………………………………………………….10
3.2 Method of AC technique …………………………………….12
3.3 Appropriate range of chopping frequency …………………..16
3.4 Apparatus ……………………………………………………18
3.5 Sensitivity of thermometers …………………………………22
3.6 Processes of measurements and its measuring parameters ….25
3.7 Addenda correction ………………………………………….32
3.8 Conclusion. ………………………………………………….33
Chapter Ⅳ : Experimental Results …………………………………………37
4.1 Specific heat of Dy5Ir4Si10 and Lu5Ir4Si10 ……………………37
4.2 Lu5Ir4Si10 …………………………………………………….37
4.3 Lu5Rh4Si10 …………………………………………………...42
Chapter Ⅴ : Discussion ……………………………………………………...52
5.1 Lu5Ir4Si10 …….………………………………………………52
5.2 Lu5Rh4Si10 …………..………………………………………53
Chapter Ⅵ : Conclusions ……………………………………………………56
Reference ……………………………………………………………………….58

參考文獻 References
[1] H. Frohlich, Proc. R. Soc. London, Ser. A 223, 296 (1954).
[2] R. E. Peierls, Quantum Theory of Solids (Oxford University Press, London, 1955), p. 108.
[3] R. Comes, M. Lambert, H. Launois, and H. R. Zeller, Phys. Rev. B 8, 571 (1973).
[4] L. B. Coleman, M. J. Cohen, D. J. Sandman, F. G. Yamagishi, A. F. Garito, and A. J. Heger, Solid State Commun. 12, 1125 (1973).
[5] J. P. Sorbier, H. Tortel, P. Monceau, and F. Levy, Phys. Rev. Lett. 76, 676 (1996).
[6] N. P. Ong and P. Monceau, Phys. Rev. B 16, 3443 (1977);N.P. Ong and J. W. Brill, ibid. 18, 5265 (1978).
[7] S. Girault, A. H. Moudden, and J. P. Pouget, Phys. Rev. B 39, 4430 (1989).
[8] D. E. Moncton, J. D. Axe, and F. J. DiSalvo, Phys. Rev. Lett. 34, 734 (1975); Phys. Rev. B 16, 801 (1977).
[9] R. S. Kwok, G. Gruner, and S. E. Brown, Phys. Rev. Lett. 65, 365 (1990).
[10] J. W. Brill, M. Chung, Y. K. Kuo, X. Zhan, E. Figueroa, and G. Mozurkewich, Phys. Rev. Lett. 74, 1182 (1995).
[11] J. A. Wilson, F. J. DiSalvo, and S. Mahajan, Adv. Phys. 24, 117 (1975).
[12] W. L. McMillan, Phys. Rev. B 16, 643 (1977).
[13] R. M. Fleming, F. J. DiSalvo, R. J. Cava, and J. V. Waszczak, Phys. Rev. B 24, 2850 (1983).
[14] R. N. Shelton, L. S. Hausermann-Berg, P. Klavins, H. D. Yang, M. S. Anderson, and C. A. Swenson, Phys. Rev. B 34, 4590 (1986).
[15] H. D. Yang, R. N. Shelton, and H. F. Braun, Phys. Rev. B 33, 5062 (1986).
[16] Luis Alcacer, The Physics and Chemistry of Low Dimensional Solids, (Reidel, Boston, 1980).
[17] B. Becker, N. G. Patil, S. Ramakrishnan, A. A. Menovsky, G. J. Nieuwenhuys, J. A. Mydosh, M. Kohgi, and K. Iwasa, Phys. Rev. B 59, 7266 (1999).
[18] F. Galli, S. Ramakrishnan, T. Taniguchi, G. J. Nieuwenhuys, J. A. Mydosh, S. Geupel, J. Ludecke, and S. van Smaalen, Phys. Rev. Lett. 85, 158 (2000).
[19] F. J. DiSalvo, in Electron-Phonon Interactions and Phase transitions, edited by T. Riste (Plenum, New York, 1977), P.107.
[20] For example, see, Molecular Metals, Les Arcs, France, 1978, edited by W. E. Hatfield (Plenum, New York, 1979).
[21] M. Chung, E. Figueroa, Y-K. Kuo, Yiqin Wang, and J. W. Brill, Phys. Rev. B 48, 9256 (1993).
[22] P. A. Lee, T. M. Rice, and P. W. Anderson, Solid State Commun. 14, 703 (1974).
[23] T. M. Rice, in Low Dimensional Cooperative Phenomena, edited by H. J. Keller (Plenum, New York, 1975).
[24] R. M. Fleming, in Physics in one-dimensional, eds. J. Bernasconi and T. Schneider (Springer-Verlag, New York, 1981).
[25] R. M. Fleming, D. E. Momcton, and D. B. McWhan, Phys. Rev. B 18, 5560 (1978).
[26] J. P. Pouget, in Low-Dimensional Electronic Properties of Molybdenum Bronzes and Oxides, edited by C. Schlenker (Kulwer, dordrecht, 1989).
[27] H. D. Yang, P. Klavins and R. N. Shelton, Phys. Rev. B 43, 7676 (1991).
[28] P. F. Sullivan, and G. Seidel, Phys. Rev. 173, 679 (1968).
[29] I. Hatta and A. J. Ikushima, Jpn. J. App. Phys. 20, 1995 (1981).
[30] M. B. Salamon, Phys. Rev. B 2, 214 (1970).
[31] Y. –K. Kuo, Ph. D. thesis, University of Kentucky (1995).
[32] Temperature Measurement and Control, product catalog and reference guide, Lake Shore Inc., Weaterville, Ohio.
[33] M. Chung and J. W. Brill, Rev. Sci. Instrum. 64 (7), 2037 (1993).
[34] N. E. Phillips, Phys. Rev. B 114, 676 (1959).
[35] L. P. Gor’kov and A. G. lebed, J. Phys. (Paris), Lett. 45,L-433 (1984).
[36] R. S. Kwok and S.E. Brown, Phys. Rev. Lett. 63, 895 (1989).
[37] C. A. Swenson, R. N. Shelton, P. Klavins and H. D. Yang, Phys. Rev. B 43, 7668 (1991).
[38] R. A. Craven and S. F. Meyer, Phys. Rev. B 16, 4583 (1977).
[39] S. Gnanarajan and R. F. Frindt, Phys. Rev. B 33,1443 (1986).
[40] A. Smontara et al., J. Phys.: Condens. Matter 4, 3273 (1992).
[41] Z. Z. Wang and N. P. Ong, Phys. Rev. B 34, 5967 (1986).
[42] R. V. Coleman, G. Eiserman, M. P. Everson, A. Johnson, and L. M. Falicov, Phys. Rev. Lett. 55, 863 (1985).
[43] Jianhui Shi, James Chepin, and Joseph H. Ross, Jr., Phys. Rev. Lett. 69, 2106 (1992).
[44] A. W. Overhauser, Phys. Rev. Lett. 29, 7023 (1984).


電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:校內校外完全公開 unrestricted
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus: 已公開 available


紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code