Responsive image
博碩士論文 etd-0629104-145846 詳細資訊
Title page for etd-0629104-145846
論文名稱
Title
金屬奈米點在低功率非揮發性記憶體元件之應用與研究
Application and Study of Metal Nanocrystals for Low Power Nonvolatile Memory Device
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
58
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2004-06-28
繳交日期
Date of Submission
2004-06-29
關鍵字
Keywords
低功率、非揮發性記憶體、奈米晶粒、金屬奈米晶粒
metal nanocrystals, low power, nanocrystals, nonvolatile memory device
統計
Statistics
本論文已被瀏覽 5649 次,被下載 3347
The thesis/dissertation has been browsed 5649 times, has been downloaded 3347 times.
中文摘要
近幾年來,具有奈米點儲存單元的非揮發性記憶體元件被廣泛的提出來克服傳統浮動閘極記憶體在操作上及可靠度上的問題。良好的記憶體元件需要具備好的元件耐力,保存時間長及操作電壓小等特性。在眾多奈米點記憶體元件中,金屬奈米點的記憶體受到廣泛的研究而有機會成為新一代記憶體元件結構。金屬點的特色主要有高狀態密度、強通道耦合能力、可調變金屬功函數以及不易受載子侷限效應所引起的能階擾動。在元件設計上金屬奈米點不但可減少操作電壓、增加抹除寫入速度與電子保存時間,最重要的是我們可以控制奈米點尺寸以及低溫製作。此項優點能應用於薄膜電晶體液晶顯示器上,如面板上製作驅動IC與邏輯IC可以增加面板多變性,開關電晶體旁增加影像儲存記憶體來節省電源損耗以增加可攜帶性。本論文主要以高功函數金屬作為記憶體儲存元件為研究,利用高溫氧化、低溫氧氣退火條件形成奈米點,並用材料分析與電性分析來研究奈米點的電荷儲存效應。
Abstract
In recently years, nonvolatile memory with nanocrystals cell have widely applied to overcome the issue of operation and reliability for conventional floating gate memory. The excellent electrical characteristics of memory device need good endurance, long retention time and small operation voltage. Among numerous memory devices with nanocrystals, the memory device with metal nanocrystals was widely researched. It will be new candidate for flash memory. The advantages of metal nanocrystals has have higher density of states around Fermi level, stronger coupling with conduction channel, wide range of available work functions and smaller energy perturbation due to carrier confinement. So metal nanocrystals can reduce operate voltage, and increase write/erase speed and endurance. Most important of all, we can control the sizes of nanocrystals dot and manufacture at low temperature。This advantage can apply to thin film transistor liquid crystal display; it fabricates driving IC and logical IC on panel for diverseness and adds memory beside switch TFT as image storage to reduce power consumption for portability.
In this thesis, we will discuss metal nanocrystals as memory storage medium. And we can use high temperature oxidation, low temperature annealing with oxygen to form nanocrystals. Besides we analyze the effect of electron storage at metal nanocrystals by means of material and electrical analysis.
目次 Table of Contents
Contents

Abstract (Chinese) …………………………………………………i
Abstract (English) …………………………………………………ii
Acknowledgment (Chinese) …………………………………………iv
Content…………………………………………………………………v
Figure Captions ……………………………………………………Vii

Chapter.1 Introduction
1.1 General Background………………………………………………1
1.2 Motivation ………………………………………………………6
1.3 Organization of This Thesis…………………………………8

Chapter.2 Characteristic of Nickel-Silicide Nanocrystals Formed with Various Oxidation Temperatures
2.1 Introduction………………………………………………………9
2.2 Experimental Process…………………………………………11
2.3 Results and discussion………………………………………12
2.3.1 Material Characteristic after 900℃ oxidation…12
2.3.2 Electrical Characteristic after 900℃ oxidation…12
2.3.3 Material Characteristic after 800℃ oxidation……14
2.3.4 Electrical Characteristic after 800℃ oxidation…14
2.3.5 Electrical Characteristic after 700℃ oxidation…15
2.4 Summary……………………………………………………………16

Chapter.3 Characteristic of Metal Nanocrystals Formed with Various Thermal Annealing Treatments
3.1 Introduction……………………………………………………17
3.2 Experimental Process…………………………………………18
3.3 Results and discussion………………………………………19
3.3.1Electrical characteristic with O2 400℃ annealing…19
3.3.2Electrical characteristic with O2 600℃ annealing…20
3.4 Summary……………………………………………………………21

Chapter.4 Conclusion and suggestion for future work
5.1Conclusion…………………………………………………………22
5.2 Suggestion of Future Work …………………………………23

References……………………………………………………………24
參考文獻 References
[1]D. Kahng and S. M. Sze, Bell Syst. Tech, J., 46, 1288 (1967).
[2]J. D. Blauwe, IEEE Transaction on Nanotechnology, 1, 72 (2002).
[3]S. Tiwari, F. Rana, K. Chan, H. Hanafi, C. Wei, and D. Buchanan, IEEE Int. Electron Devices Meeting Tech. Dig., 521 (1995)
[4]J. J. Welser, S. Tiwari, S. Rishton, K. Y. Lee, and Y. Lee, IEEE Electron Device Lett., 18, 278 (1997).
[5]Y. C. King, T. J. King, and C. Hu, IEEE Int. Electron Devices Meeting Tech. Dig., 115 (1998).
[6]M. H. White, Y. Yang, A. Purwar, and M. L. French, IEEE Int’l Nonvolatile Memory Technology Conference, 52 (1996).
[7]M.H. White, D. A. Adams, and J. Bu, IEEE circuits & devices, 16, 22 (2000)
[8]H. E. Maes, J. Witters, and G. Groeseneken, Proc. 17 European Solid State Devices Res. Conf. Bologna 1987, 157 (1988)
[9]I. Kim, S. Han, K. Han, J. Lee, and H. Shin, IEEE Electr. Device Lett., 20, 630 (1999).
[10]I. G. Kim, H. S. Kim, J. H. Lee, and H. C. Shin, Ext. Abst. SSDM, 1998, p. 170.
[11]I. G. Kim, S. Y. Han, H. S. Kim, J. H. Lee, B. H. Choi, S. W. Hwang, D. Y. Ahn, and H. C. Shin, IEEE Int. Electron Devices Meeting Tech. Dig., 1998, p. 111.
[12]Y. C. King, T. J. King, and C. Hu, IEEE Trans. Electron Devices, 48, 696 (2001).
[13]Y.-C. King, T.-J. King, and C. Hu, IEEE Trans. Electron Devices, vol. 48, pp. 696–700, Apr. 2001
[14]M. L. Ostraat, J. W. De Blauwe, M. L. Green, L. D. Bell, M. L. Brongersma, J. Casperson, R. C. Flagan, and H. A. Atwater, Appl. Phys. Lett., 79, 433 (2001).
[15]H. I. Hanafi, S. Tiwari, and I. Khan, IEEE Trans. Electron Devices, vol. 43, pp. 1553–1558,Sept. 1996
[16]N. M. Park, S. H. Choi, and S. J. Park, Appl. Phys. Lett., 81, 1092 (2002).
[17]Z. Liu, C. Lee, V. Narayanan, G. Pei, and E. C. Kan, IEEE Trans. Electron Devices, 49, 1606 (2002).
[18]Z. Liu, C. Lee, V. Narayanan, G. Pei, and E. C. Kan, IEEE Trans. Electron Devices, 49, 1614 (2002).
[19]M.Takata, S.Kondoh, T.Sakaguchi, H.Choi, J-C.Shim, H.Kurino and M.Koyanagi, 2003 IEDM Technical Digest, Session 22.5
[20]C. Lee et al., 2003 IEDM Technical Digest, Session 22.6.
[21]N. D. Young, G. Harkin, R.M. Bunn, D. J. McCulloch, and I.D. French, IEEE Trans. Electron Devices, Vol. 43, No. 11, pp.1930-1936,1996.
[22]S. Tiwari, F. Rana, K. Chan, H. Hanafi, C. Wei, and D. Buchanan, IEEE Int. Electron Devices Meeting Tech. Dig., p. 521 (1995).
[23]Z. Liu, C. Lee, V. Narayanan, G. Pei, and E. C. Kan, IEEE Tran. Electron Devices, 49, 1606 (2002).
[24]Y. C. King, T. J. King, and C. Hu, Int. Electron Devices Meeting Tech. Dig., p. 115 (1998).
[25]S. Tiwari, F. Rana, K. Chan, L. Shi, and H. Hanafi, Appl. Phys. Lett., 69, 1232, (1996).
[26]M. Ostraat, J. De Blauwe, M. Green, D. Bell, H. Atwater, and R. Flagan, J. Electrochem. Soc., 148, 265 (2001).
[27]J. H. Sim, H. C. Wen, J. P. Lu, and D. L. Kwong, IEEE Electron Device Letters ,VOL. 24, NO. 10, October 2003
[28]G. J. Huang and L. J. Chen,J. Appt. Phys. 74 (2), 15 July 1993
[29]Z. Suo and A.Zhang, Phys. Rev. B vol. 58, pp.5116-5120,1998.
[30]D. A. Bonnell, Y. Liang, M. Wagner, D. Carroll, and M. Bühle, Acta Mater., vol. 46, pp. 2263–2270, Apr. 1998.
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:校內校外完全公開 unrestricted
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus: 已公開 available


紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code