Responsive image
博碩士論文 etd-0629104-160043 詳細資訊
Title page for etd-0629104-160043
論文名稱
Title
快速沉積低溫微晶矽與薄膜電晶體上銅污染之探討
Study on the Fast-Deposition Low Temperature Hydrogenated Microcrystalline Silicon and Copper Pollution of Thin Film Transistors
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
58
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2004-06-28
繳交日期
Date of Submission
2004-06-29
關鍵字
Keywords
微晶矽、銅、高密度電漿
microcrystalline, ICPCVD, copper
統計
Statistics
本論文已被瀏覽 5735 次,被下載 4033
The thesis/dissertation has been browsed 5735 times, has been downloaded 4033 times.
中文摘要
本論文研究主動式矩陣液晶顯示器(AMLCD)中薄膜電晶體(TFTs)的改善與汙染。
微晶矽因具有較高載子移動率且光穩定性較佳,因而成為取代非晶矽的選擇之一。我們將利用感應式耦合電漿輔助化學氣相沉積系統(ICPCVD)來增進微晶矽的沉積速率(4~5 Å /sec),這樣的沉積速率將比傳統的電漿輔助化學氣象沉積快(傳統的PECVD沉積速率約0.1~1 Å /sec)。我們引用氫蝕刻模型來解釋低溫下微晶矽結晶的機制,並藉由調變氫氣在反應氣體裡面所佔的流量比與電漿的反應功率來探討氫比率與功率對結晶性的影響。
此外我們亦提出兩種方法來改善薄膜的結晶性;分別是成長表面的電漿處理與核種層的成長。電漿處理過的表面與初始核種層的沉積皆能有效改善薄膜的結晶率,我們亦提出氫蝕刻與表面幾何影響的模型來解釋結晶率的改善。此外我們並探討基板溫度對於結晶性的影響;當基材表面的反應溫度較低時,氫電漿蝕刻反應將降低而使得薄膜沉積速率上升但結晶率下降。我們發現在250℃的低溫下亦可成長出微晶矽,這代表以後我們可利用ICPCVD系統在可彎曲的塑膠基板上沉積微晶矽薄膜。
在薄膜電晶體的污染方面,我們將探討銅導線製程對於薄膜電晶體的影響。具高解析度大面板的主動式矩陣液晶顯示器(high-resolution large-area AMLCDs)將使用銅導線取代現今的鋁導線以降低鋁導線RC decay引起的訊號衰竭。在我們的研究中發現當元件受到銅污染時其輸出特性與載子移動率將降低。這是因為銅會在傳導層中形成缺陷,而表面的銅會與矽反應而導致傳導層表面氧化而消除表面的懸鍵,進而降低元件的漏電流。
Abstract
The improvement and copper contamination of TFTs in active-matrix liquid-crystal displays (AMLCDs) will be discussed in this thesis.
TFT with hydrogenated microcrystalline silicon films (mc-Si:H) came to be the attractive candidate due to its higher mobility and stable characteristics. We deposited mc-Si:H films by inductively coupled plasma chemical vapor deposition system (ICPCVD) to achieve fast deposition rate (4~5 Å /sec) which is faster than the conventional PECVD (around 0.1~1 Å/sec). The crystallization of mc-Si:H films deposited by ICPCVD at low temperature was explained by hydrogen etching model. With modulating the hydrogen dilution and rf power of ICPCVD, we can determine the crystallinity of silicon films.
Two ways to increase the crystallinity of silicon films was designed: one is the plasma treatment on surface of substrate, and the other is on seed layer. Both methods increased the crystallinity of silicon films and were explained by hydrogen etching and influence of roughness surface. Besides, we discuss the effects of substrate temperature in crystallinity. Microcrystalline silicon films can be deposited at very low temperature as 250℃, where we may deposit microcrystalline silicon films on flexible plastics substrate in the future.
Additionally, we investigated the effects of copper contamination on active layer of TFTs. High resolution large-area AMLCDs will take copper gate and connection to replace aluminum for lowering the RC decay of aluminum connection. We observed that the mobility and output characteristics of TFTs were decreased with copper contamination which played as traps in the channel of TFTs. Besides, part copper contamination at the surface of a-Si layer would form the chemical oxide and eliminate surface state of channel. Therefore, the off current will be decreased.
目次 Table of Contents
Contents

Abstract (Chinese)……………………………………………………………………i
Abstract (English)……………………………………………………………………iii
Acknowledgement (Chinese)……………………………………………………….v
Contents.......................................................................................................... vi
Table Captions............................................................................................... viii
Figure Captions……………………………........................................................ix

Chapter 1 Introduction………………………………………………..1
1.1 General Background............................................................1
1.2 Motivation ……………………...............................................6
1.3 Organization of This Thesis..................................................8

Chapter 2 Effects of Hydrogen Dilution and rf Power on the Properties of mc-Si:H Films……………………………..9

2.1 Introductions........................................................................9
2.2 Experimental Procedure.....................................................12
2.3 Results and Discussions....................................................13
2.4 Summary............................................................................17

Chapter 3 Effects of Plasma Treatment for Dielectric and Seed Layer on the Crystallinity of mc-Si:H…………………..19

3.1 Introductions......................................................................19
3.2 Experimental Procedure.............................................20
3.3 Results and discussions……………………………………..21
3.3.1 Effects of plasma-treatment interface.....................21
3.3.2 Effects of seed layer deposition…………………….22
3.3.3 Effects of seed layer deposition…………………….23
3.3.4 Cross-section of mc-Si:H films……………………...24
3.4 Summary………………..……………………………………..25

Chapter 4 Effects of Copper Contamination on Active Layer of Thin Film Transistors………………………….................................26

4.1 Introduction……………………………………………………26
4.2 Experimental Procedures……………………………………27
4.2.1 The fabrication process of invert staggered TFTs...27
4.2.2 Experiment Procedures of copper contamination...29
4.3 Results and Discussion……………………………………...21
4.3.1 Effects of slight copper contamination on TFTs…..27
4.3.2 Effects of heavy copper contamination on TFTs....29
4.3.3 Annealing effects on heavy copper contamination TFTs……………………………………………….....30
4.3.4 Surface and depth contamination analysis of copper………………………………………………..31
4.4 Summary……………………………………………………...32

Chapter 5 Conclusions and Future works………………………..33
5.1 Conclusions………………………………….…………….…33
5.2 Suggestions for future works……………………………….35
參考文獻 References
[1] J. Meier, R. Fluckiger, H. Keepner, A. Shah: Appl. Phys. Lett. 65 (1994) 860.
[2] Wehrspohn, R.B.; Deane, S.C.; French, I.D.; Powell, M.J.: Thin Solid Films 2001 pp. 117
[3]A. Matsuda: J. Non-Cryst. Solids 59&60 (1983) 76
[4]C. C. Tsai, G. B. Anderson, R. Thompson and B. Wacker J. Non-Cryst. Solids 114 (1989) 151
[5] C. Wang, M. J. Williams and G. Lucovsky: J. Vac. Sci. Techno.A 9 (1991) 779
[6] A. Asano: Appl. Phys. Lett. 59 (1990 533
[7] G. N. Parsons: App. Phys. Lett, 59(1991) 2546
[8] D. Das, Phys. Rev. B 51 (1995) 10729.
[9] D. Das, Solid State Commun. 108 (1998) 983.
[10] M. Jana, D. Das, S.T. Kshirsagar, A.K. Barua, Jpn. J. Appl. Phys. 38 (1999) 1087.
[11] D. Das, J. Phys. D: Appl. Phys. 36 (2003) 2335.
[12] B. Kalache, A. I. Kosarev, R. Vanderhaghen, and P. Roca i Cabarrocas; J. Appl. Phys. 93, (2003) 1262
[13] M. S. Feng and C. W. Liang: J. Appl. Phys. 77, 4771 (1995)
[14] K. Nakamura, K. Yoshida, S. Takeoka, I. Shimizu, Jpn. J. Appl. Phys.34 (1995) 442
[15] Z. Iqbal, S. Veperk J. Phys. C 15 (1982) 377
[16] G. Viera, S. Huet, and L. Boufendi: J. Appl. Phys. 90 (2001) 4175
[17] T. Kaneko K. Onisawa, M. Wakagi, Y. Kita and T. Minemura: Jpn. J. Appl. Phys. 32 (1993) 4907.
[18] C. Smit, R. A. C. M. M. van Swaaij, A. M. H. N. Petit W. M. M. Kessels and M. C. M. van de Sanden: J. Appl. Phys. 94 (2003) 3582
[19] M. Wakagi, T. Kaneko, K Ogate and A. Nakano: Mater. Res. Soc. Symp. Proc. , 285 (1993) 555
[20] J. Robertson, M. J. powell: Thin Solid Films 337 (1999) 32
[21] Y. Sun, T. Miyasato and J. K. Wigmore: Appl. Phys. Lett. 70 (1997) 508
[22] S. Kasouit, S. Kumar, R.V anderhaghen, P.Roca i Cabarrocas, I. French: J.Non-Cryst. Solids 299–302 (2002) 113.
[23] C. Fukai, Y. Moriya, T. Nakamura and H. Shirai Jpn. J. Appl. Phys. 38 (1999) 554
[24] S. Kasouit, P. Roca i Cabarrocas, R. Vanderhaghen, Y. Bonassieux, M.Elyaakoubi I. French: Thin Solid Films 427 (2003) 67
[25] S. Kasouit, P. Roca i Cabarrocas, R. Vanderhaghen, Y. Bonnassieux, M. Elyaakoubib and I. D. French: 338-340 (2004) 369
[26] Young-Bae Park and Shi-Woo Rhee: J. Appl. Phys 90 (2001) 217
[27] M. Syed, T. Inokuma, Y. Kurata and S. Hasegawa: Jpn. J. Appl. Phys. 41 (2002) 263
[28] S. MUKHOPADHYAY, S. Chandra SAHA and S. RAY: Jpn. J. Appl. Phys. 40 (2001) 6284
[29] P. Alpuim, V, Chu, J. P. Conde: J. Non-Cryst. Solids 266&269 (2000) 110
[30] H. Gleskova, S. Wangner, Z. Suo: Mater. Res. Soc. Proc. (1998) 507
[31] C. J. Liu, L.J. Chen: J. Appl. Phys. 74 (1993) 3613
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:校內校外完全公開 unrestricted
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus: 已公開 available


紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code