Responsive image
博碩士論文 etd-0629105-114704 詳細資訊
Title page for etd-0629105-114704
論文名稱
Title
鉀離子通道結合異構蛋白與鉀離子通道蛋白分子間結合機制之研究
The molecular events affect differential interaction of KChIP2.2 and KChIP4a with Kv channel
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
81
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2005-06-28
繳交日期
Date of Submission
2005-06-29
關鍵字
Keywords
通道結合蛋白、鉀、鎂
Kv channel, KChIP2.2, KChIP4a
統計
Statistics
本論文已被瀏覽 5657 次,被下載 2543
The thesis/dissertation has been browsed 5657 times, has been downloaded 2543 times.
中文摘要
KChIP (Kv channel-interacting protein)為具有4 個EF-hands 的蛋白質已知可調控Kv channel 電生理功能,本論文主要探討KChIP2.2 與KChIP4a 和Kv4.2 channel 分子間結合的影響因子。在沒有鎂與鈣離子存在時,相較KChIP4a,KChIP2.2 與Kv channel 有明顯的結合反應,但兩者與Kv channel 分子間的結合可隨鈣離子及鎂離子濃度增加而增加,由突變蛋白和Kv channel 結合反應顯示KChIP4a 與KChIP2.2 和Kv channel 之結合作用無法由單一分子區域決定之。螢光實驗結果中發現KChIP2.2 對於鈣離子結合具有high affinity 與low affinity Ca2+-binding sites 而KChIP4a 僅只有一個low affinity Ca2+-binding site,但兩者僅具有一種Mg2+-binding site,由突變蛋白分析結果顯示KChIP2.2 之EF-hand 4 與其對鈣離子的high affinity site 有關,但是其他EF-hands 結構的完整性對於維持其對鎂與鈣離子之親和性也具有重要角色。與二價離子結合後KChIP2.2 的熱穩定性會降低,但KChIP4a
卻反而上升, Proteolytic digestion 與thiol reactivity 的實驗反應出KChIPs 結合鎂離子與鈣離子後構形產生不同的改變,在細胞內蛋白質分佈的實驗中可以增加KChIP2.2 分佈在細胞膜的情形但KChIP4a 則否,另外與老鼠腦萃取液中蛋白質的結合反應,也受到鈣離子之影響。綜合上述的結果,顯示KChIP2.2 與KChIP4a 和二價離子結合之後所誘導的結構變化,影響其和Kv channel 結合及細胞內的分佈扮演重要的角色
Abstract
Kv channel interacting proteins (KChIPs) are Ca2+-binding proteins with four EF-hands and well-known to modulate Kv4.2 channel gating. The present study is carried out to investigate the molecular mechanism related to regulate the interaction of KChIP2.2 and KChIP4a with Kv channel. In comparison with KChIP4a, the interaction of KChIP2.2 with Kv4.2 was more obvious in the absence of Ca2+ or Mg2+. However the binding of KChIP2.2 and KChIP4a toward Kv4.2 increased with increasing Ca2+ and Mg2+ concentration. Nevertheless, no individual regions within KChIP2.2 and KChIP4a could exclusively fulfill the interaction between KChIPs mutants and Kv channel. Fluorescence measurement showed that KChIP2.2 possessed both high affinity and low affinity Ca2+-binding sites, but only low affinity Ca2+-binding site was observed with
KChIP4a. However, both of them have only one Mg2+-binding site. Studies on the truncated mutants revealed that the EF-hand 4 of KChIP2.2 was related to high affinity binding with Ca2+, and the integrity of molecular structure of KChIP2.2 and KChIP4a was important for Ca2+ -and Mg2+-binding. The thermal stability of KChIP2.2 and KChIP4 was found to be differentiately affected by Ca2+ and Mg2+. Proteolytic digestion and thiol reactivity assays also supported that Ca2+ and Mg2+-induced conformational change of KChIP2.2 was differed from KChIP4a. Moreover, in cells
co-transfected with Kv4.2 cDNA, it was formed that KChIP2.2 trafficking to the cell surface was increased by elevating intracellular Ca2+ concentration, but no noticeable change was observed for KChIP4a. Taken together, these results suggest that the conformational changes of KChIP2.2 and KChIP4a differently induced by Ca2+ and Mg2+ affect their binding with Kv channel and/or cellular distribution.
目次 Table of Contents
中文摘要----------------------------------- 1
英文摘要----------------------------------- 2
緒論--------------------------------------- 3
縮寫--------------------------------------- 10
實驗材料----------------------------------- 11
實驗方法----------------------------------- 13
實驗結果----------------------------------- 28
討論--------------------------------------- 41
圖表--------------------------------------- 45
參考文獻----------------------------------- 75
參考文獻 References
75
參考文獻
Ames JB, Ikura M. (2002). Structure and membrane-targeting mechanism of retinal
Ca2+-binding proteins, recoverin and GCAP-2.Adv Exp Med Biol. 514:333-48.
An, W. F., Bowlby, M. R., Betty, M., Cao, J., Ling, H. P., Mendoza, G., Hinson, J. W.,
Mattsson, K. I., Strassle, B. W., Trimmer, J. S., and Rhodes, K. J. (2000). Modulation of
A-type potassium channels by a family of calcium sensors. Nature .403, 553-556.
Bahring, R., Dannenberg, J., Peters, H. C., Leicher, T., Pongs, O., and Isbrandt, D.
(2001). Conserved Kv4 N-terminal domain critical for effects of Kv channel-interacting
protein 2.2 on channel expression and gating. J Biol Chem. 276, 23888-23894.
Berg, J. M., Tymoczko, J. L. and Stryer, L. (2001) Signal-transduction pathways:an
introduction to information metabolism., In:Biochemistry 5th ed. pp. 410, W. H.
Freeman and Company, New York
Boland, M. L., Jiang, M., Lee, Y. S., Fahrenkrug, C. S., Harnett, T. M., and O'Grady, M.
S. (2003) Functional properties of a brain-specific NH2-terminally spliced modulator of
Kv4 channels. J Physiol Cel l. 285, 161-170.
Burgoyne, R. D. and Weiss, J. L. (2001) The neuronal calcium sensor family of
Ca2+-binding proteins. Biochem J. 353, 1-12.
76
Buxbaum, J. D., Choi, E. K., Luo, Y., Lilliehook, C., Crowley, A. C., Merriam, D. E.
and Wasco, W. (1998) Calsenilin: a calcium-binding protein that interacts with the
presenilins and regulates the levels of a presenilin fragment. Nat Med. 4, 1177-81.
Carrion, A. M., Link, W. A., Ledo, F., Mellstrom, B. and Naranjo, J. R. (1999) DREAM
is a Ca2+-regulated transcriptional repressor. Nature. 398, 80-4.
Choe, S. (2002). Potassium channel structures. Nat Rev Neurosci 3, 115-121.
Decher, N., Uyguner, O., Scherer, C. R., Karaman, B., Yuksel-Apak, M., Busch, A. E.,
Steinmeyer, K. and Wollnik, B. (2001) hKChIP2 is a functional modifier of hKv4.3
potassium channels: cloning and expression of a short hKChIP2 splice variant.
Cardiovasc Res. 52, 255-64.
Decher, N., Barth, A. S., Gonzalez, T., Steinmeyer, K., and Sanguinetti, M. C. (2004).
Novel KChIP2 isoforms increase functional diversity of transient outward potassium
currents. J Physiol 557, 761-772.
Deschenes, I., DiSilvestre, D., Juang, G. J., Wu, R. C., An, W. F. and Tomaselli, G. F.
(2002a) Regulation of Kv4.3 current by KChIP2 splice variants: a component of native
cardiac I(to) Circulation 106, 423-9.
77
Deschenes, I., and Tomaselli, G. F. (2002b). Modulation of Kv4.3 current by accessory
subunits. FEBS Lett 528, 183-188.
Dixon, J. E., Shi, W., Wang, H. S., McDonald, C., Yu, H., Wymore, R. S., Cohen, I. S.,
and McKinnon, D. (1996). Role of the Kv4.3 K+ channel in ventricular muscle. A
molecular correlate for the transient outward current. Circ Res 79, 659-668.
Doronin, V. S., Potapova, A. I., Lu, Z, and Cohen, S. I. (2004). Angiotensin receptor
type 1 forms a complex with the transient outward potassium channel Kv4.3 and
regulates its gating properties and intracellular localization. Biochem J. 279,
48231-48237.
Holmqvist, M. H., Cao, J., Knoppers, M. H., Jurman, M. E., Distefano, P. S., Rhodes, K.
J., Xie, Y. and An , W. F. (2001) Kinetic modulation of Kv4-Mediated A-Current by
arachidonic acid is dependent on potassium channel interacting proteins. J Neurosci. 21,
4154–4161.
Jo, D. G., Lee, J. Y., Hong, Y. M., Song, S., Mook-Jung, I., Koh, J. Y., and Jung, Y. K.
(2004). Induction of pro-apoptotic calsenilin/DREAM/KChIP3 in Alzheimer's disease
and cultured neurons after amyloid-beta exposure. J Neurochem 88, 604-611.
Lin, Y. L., Chen, C. Y., Cheng, C. P., and Chang, L. S. (2004). Protein-protein
interactions of KChIP proteins and Kv4.2. Biochem Biophys Res Commun 321,
606-610.
78
Lodish, H., Berk, A., Zipursky, S. L., Matudaria, P., Baltimore, D., and Darnell, J. E.
(1999a) in Molecular cell biology (Sara, T., ed) Vol. 21, pp. 936, 24 vols., W. H.
Freeman and company, New York.
Lodish, H., Berk, A., Zipursky, S. L., Matudaria, P., Baltimore, D., and Darnell, J. E.
(1999b) in Molecular cell biology (Sara, T., ed) Vol. 15, pp. 585, 24 vols., W. H.
Freeman and company, New York.
Morohashi, Y., Hatano, N., Ohya, S., Takikawa, R., Watabiki, T., Takasugi, N.,
Imaizumi, Y., Tomita, T., and Iwatsubo, T. (2002). Molecular cloning and
characterization of CALP/KChIP4, a novel EF-hand protein interacting with presenilin
2 and voltage-gated potassium channel subunit Kv4. J Biol Chem 277, 14965-14975.
O'Callaghan, D. W., Hasdemir, B., Leighton, M., and Burgoyne, R. D. (2003). Residues
within the myristoylation motif determine intracellular targeting of the neuronal Ca2+
sensor protein KChIP1 to post-ER transport vesicles and traffic of Kv4 K+ channels. J
Cell Sci 116, 4833-4845.
Ohya, S., Morohashi, Y., Muraki, K., Tomita, T., Watanabe, M., Iwatsubo, T., and
Imaizumi, Y. (2001). Molecular cloning and expression of the novel splice variants of
K(+) channel-interacting protein 2. Biochem Biophys Res Commun 282, 96-102.
Osawa, M., Dace, A., Tong, K. I., Valiveti, A., Ikura, M., and Ames, J. B. (2005). Mg2+
and Ca2+ differentially regulate DNA binding and dimerization of DREAM. J Biol
Chem.
79
Ren, X., Stuart, H., and Takimoto, K. (2003). Effective association of Kv
channel-interactiong proteins with Kv4 channel is Mediated with their unique core
peptide. Biochem J. 278,43564-43570.
Rhodes, J. K., Carroll, I. K., Sung A. M., Dolivira, C. L., Monaghan, M. M., Burke, L.
S., Strassle, W. B., Buchwalder, L., Menegola, M., Cao, J., An, F. W., and Teimmer, S.J.
(2004). KChIPs and Kv4a subunits as integral components of A-type potassium
channels in mammalian brain.Neuroscience 24, 7903-7915.
Rosati, B., Grau, F., Rodriguez, S., Li, H., Nerbonne, J. M., and McKinnon, D. (2003).
Concordant expression of KChIP2 mRNA, protein and transient outward current
throughout the canine ventricle. J Physiol 548, 815-822.
Sanguinetti, M. C. (2002). When the KChIPs are down. Nat Med 8, 18-19.
Scsucova S, Palacios D, Savignac M, Mellström B, Naranjo JR, Aranda A. (2005) The
repressor DREAM acts as a transcriptional activator on Vitamin D and retinoic acid
response elements. Nucleic Acids Res. 2005; 33(7): 2269-2279.
Serodio, P., Kentros, C., and Rudy, B. (1994). Identification of molecular components of
A-type channels activating at subthreshold potentials. J Neurophysiol 72, 1516-1529.
Sherrington, R., Rogaev, E. I., Liang, Y., Rogaeva, E. A., Levesque, G., Ikeda, M., Chi,
H., Lin, C., Li, G. and Holman, K. (1995) Cloning of a gene bearing missense mutations
in early-onset familial Alzheimer's disease. Nature. 375, 754-60.
Shibata, R., Misonou, H., Campomanes, C. R., Anderson, A. E., Schrader, L. A.,
Doliveira, L. C., Carroll, K. I., Sweatt, J. D., Rhodes, K. J., and Trimmer, J. S. (2003). A
fundamental role for KChIPs in determining the molecular properties and trafficking of
Kv4.2 potassium channels. J Biol Chem 278, 36445-36454.
Strong, P. N., Goerke, J., Oberg, S. G. and Kelly, R.B. (1976) beta-Bungarotoxin, a
pre-synaptic toxin with enzymatic activity. Proc Natl Acad Sci U S A. 73, 178-82.
Suzuki, T., and Takimoto, K. (2005). Differential expression of Kv4 pore-forming and
KChIP auxiliary subunits in rat uterus during pregnancy. Am J Physiol Endocrinol
Metab 288, E335-341.
Takimoto, K., Yang, E. K., and Conforti, L. (2002). Palmitoylation of KChIP splicing
variants is required for efficient cell surface expression of Kv4.3 channels. J Biol Chem
277, 26904-26911.
Xia, W. (2001) Amyloid metabolism and secretases in Alzheimer's disease. Curr Neurol
Neurosci Rep. 1, 422-7.
Xiong, H., Kovacs, I., and Zhang, Z. (2004). Differential distribution of KChIPs
mRNAs in adult mouse brain. Brain Res Mol Brain Res 128, 103-111.
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:校內外都一年後公開 withheld
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus: 已公開 available


紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code