Responsive image
博碩士論文 etd-0629106-143359 詳細資訊
Title page for etd-0629106-143359
論文名稱
Title
固態氧化物燃料電池Ni-CGO陽極之電化學性能研究
A study of electrochemical properties of Ni-CGO composite for SOFC anode
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
113
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2006-06-12
繳交日期
Date of Submission
2006-06-29
關鍵字
Keywords
固態氧化物燃料電池、靜電輔助超音波霧化沉積、交流阻抗圖譜
impedance spectra, solid oxide fuel cell, electrostatic assisted ultrasonic spray pyrolysis
統計
Statistics
本論文已被瀏覽 5640 次,被下載 0
The thesis/dissertation has been browsed 5640 times, has been downloaded 0 times.
中文摘要
在過去的幾十年研究當中,Ni/YSZ (Yttria Stabilized Zirconia)主
要是作為高溫型(>1000℃)固態氧化物燃料電池之陽極材料。然而,
由於Ni/YSZ 在中溫(500~700℃)的環境下使用時,其所具有的導電率
已不足。因此,為了尋求能代替Ni/YSZ 作為中溫固態氧化物燃料電
池(IT-SOFC)之陽極的話,Ni/CGO 複合陽極是一個相當適合的選擇。
本次研究的目的是以靜電輔助超音波霧化沉積法(electrostatic
assisted ultrasonic spray pyrolysis, EAUSP)來製備Ni/CGO 複合陽極。
希望其可以藉由適當的沉積參數,而沉積出其所需要的結晶相以及高
孔隙度之微觀結構,使其獲得較小的電極阻抗。從研究結果可以清楚
發現,沉積溫度與加速電壓是主導整個薄膜表面型貌的發展,進而影
響到電極與電解質之介面極化阻抗。
因此,最佳之微結構沉積條件為溫度450℃,加速電壓為12 kV,
Ni/CGO 莫耳比為6:4 時,其所沉積之Ni/CGO 薄膜其表面形貌類似
於花菜形貌,因而具有相當好的孔隙性。使得其電極介面極化阻抗值
在550℃時為0.09 Ωcm2,會比傳統利用浸漬塗覆法(550℃、0.14 Ωcm2)
或是機械混合法(550℃、0.12 Ωcm2)方式製作陽極來的低。
Abstract
For the past few decades, Ni-YSZ (yttria-stabilized zirconia) has been the dominate anode material of high temperature (>1000℃) solid oxide fuel cells (SOFCs). However, the conductivity of Ni/YSZ is not enough when the operation temperature is in the intermediate rage of 500~700℃. Instead, Ni/CGO is a good candidate as the anode material of intermediate temperature SOFCs (IT-SOFC), due to its enhanced conductivity.
This work was aimed at the preparation of Ni/CGO composite anodes using the electrostatic assisted ultrasonic spray pyrolysis (EAUSP) method. By properly adjusting the deposition parameters, highly porous composite films with desired phases and microstructure rendering low electrode impedances were obtained. The results indicated that deposition temperature and the applied voltage dictated the evolution of film morphology and hence the interface impedance between the electrode and the electrolyte.
Therefore, the optimum deposition parameters for the best microstructure and hence minimum interface impedance were 12 kV for the applied voltage, 6 : 4 for the Ni-CGO mole ratio, 450℃ for the deposition temperature. The microstructure thus obtained possessed a cauliflower-like structure with high porosity. The resultant interface impedance at 550℃ was 0.09 Ωcm2, lower than that obtained from the conventional anode preparation routes of dip-casting (0.14 Ωcm2) or mechanical mixing (0.12 Ωcm2).
目次 Table of Contents
中文摘要............................................................................................ I
英文摘要............................................................................................ II
目錄.................................................................................................... IV
圖索引................................................................................................ VIII
表索引................................................................................................ XIII
第一章、緒論...................................................................................... 1
1-1 前言........................................................................................... 1
1-2 研究動機及目的....................................................................... 2
第二章、文獻回顧.............................................................................. 7
2-1 燃料電池簡介........................................................................... 7
2-1-1 燃料電池工作原理............................................................ 7
2-1-2 燃料電池的優點................................................................ 9
2-1-3 燃料電池之分類................................................................ 10
2-2 固態氧化物燃料電池............................................................... 11
2-2-1 固態氧化物燃料電池構造................................................ 11
2-2-2 固態氧化物燃料電池工作原理........................................ 12
2-3 CGO (gadolinia-doped ceria)……………………………… 15
2-3-1 化學計量型二氧化鈰 (stoichiometric ceria)………… 15
2-3-2 非化學計量型二氧化鈰 (non-stoichiometric
Ceria,CeO2-X)……………………………………………16
2-4 超音波霧化之原理................................................................... 20
2-5 傳統Ni/YSZ 複合陽極的導電機制......................................... 21
2-6 電池反應之極化現象............................................................... 23
2-7 電極動力學............................................................................... 24
2-7-1 活性極化機制.................................................................... 25
2-7-2 濃度極化機制.................................................................... 26
2-8 電化學量測原理....................................................................... 28
2-8-1 交流阻抗分析.................................................................... 28
第三章、實驗方法及步驟................................................................. 32
3-1 實驗藥品................................................................................... 32
3-2 實驗流程................................................................................... 33
3-3 電解質基材製備....................................................................... 34
3-4 配製溶液先驅物....................................................................... 34
3-5 靜電輔助超音波霧化沉積法................................................... 34
3-5-1 靜電輔助超音波霧化沉積設備........................................ 34
3-5-2 靜電輔助超音波霧化沉積................................................ 35
3-6 鍍膜參數設定........................................................................... 36
3-6-1 鍍膜之溫度系列................................................................ 37
3-6-2 鍍膜之電壓系列................................................................ 37
3-6-3 鍍膜之成份系列................................................................ 38
3-7 XRD 分析................................................................................... 38
3-8 SEM 觀察................................................................................... 39
3-8-1 橫截面(Cross-section)觀察試片之製作........................... 39
3-8-2 表面(Top-view) 觀察試片之製作................................... 42
3-9 陽極與電解質(Ni/CGO)介面之電化學分析........................... 42
3-9-1 Ni/CGO//CGO//Ni/CGO 對稱電池製作............................ 42
3-9-2 交流阻抗分析(Frequency Response Analyzer)………… 43
第四章、實驗結果與討論................................................................. 44
4-1 溫度系列................................................................................... 44
4-1-1 XRD 結果........................................................................... 44
4-1-2 SEM 微結構觀察................................................................ 46
4-1-3 交流阻抗分析.................................................................... 51
4-2 電壓系列................................................................................... 57
4-2-1 XRD結果............................................................................ 57
4-2-2 SEM 微結構觀察................................................................ 59
4-2-3 交流阻抗分析.................................................................... 66
4-3 成份系列................................................................................... 72
4-3-1 XRD結果............................................................................ 72
4-3-2 SEM 微結構觀察................................................................ 74
4-3-3 交流阻抗分析.................................................................... 78
4-4 活化能之探討與介面極化阻抗值之比較................................ 83
第五章、結論..................................................................................... 88
第六章、參考文獻............................................................................. 90
附錄.................................................................................................... 95
附錄一 Ce0.9Gd0.1O1.95 之JCPDS 卡................................................. 95
附錄二 NiO 之JCPDS 卡................................................................. 96
附錄三 Ni 之JCPDS 卡.................................................................... 97
參考文獻 References
1. 陳振源,科學發展,391,(2005) 62-65

2. 李邦則,台灣綜合展望,2,(2002) 131-140

3. R. M. Ormerod, Chem. Soc. Rev., 32, (2003) 17–28

4. W. Ellis, R. Von Spakovsky and J. Nelson, PROCEEDINGS
OF THE IEEE, 89, (2001) 1808-1818

5. N. Q. Minh, J. Am. Ceram. Soc., 76, (1993) 563-588

6. T. Fukui, S. Ohara and K. Mukai, Electrochem. Solid State Lett., 1, (1998) 120–122

7. J. Macek, M. Marinsek, NanoStructured Materials, 12, (1999) 499-502

8. H. Koide, Y. Someya, T. Yoshida and T. Maruyama, Solid State
Ionics, 132, (2000) 253–260

9. A. Ringuede, D. Bronine and J. R. Frade, Solid State Ionics, 146,
(2002) 219–224

10. J. H. Lee, H. Moon, H. W. Lee, J. Kim, J. D. Kim and K. H. Yoon,
Solid State Ionics, 148, (2002) 15– 26

11. T. Fukui, S. Ohara, M. Naito and K. Nogi, Powder Technology, 132,
(2003) 52-56

12. T. Fukui, S. Ohara, M. Naito and K. Nogi, J. Europ. Ceram. Soc., 23, (2003) 2963-2967

13. T. Hatae, N. Kakuda, T. Taniyama and Y.Yamazaki, J. Power Sources, 135, (2004) 25-28

14. T. Fukui, K. Murata, S. Ohara, H. Abe, M. Naito and K. Nogi, J.
Power Sources, 125, (2004) 17-21

15. B.C.H. Steele, J. Power Sources, 49, (1994) 1-14

16. J. M. Bae, B. C. H. Steele, Solid State Ionics, 106, (1998) 247–253

17. J. Will, A. Mitterdorfer, C. Kleinlogel, D. Perednis and L. J.
Gauckler, Solid State Ionics, 131, (2000) 79-96

18. J. P. P. Huijsmans, F. P. F. van Berkei and G.M. Christic, J. Power
Sources, 71, (1998) 107-110

19. H. Inaba, H. Tagawa, Solid State Ionics, 83, (1996) 1-16

20. N. Oishi, A. Atkinson, N. P. Brandon, J. A. Kilner and B. C. H.
Steele, J. Am. Ceram. Soc., 88, (2005) 1394-1396

21. S. Baron, N. Brandon, A. Atkinson, B. Steele and R. Rudkin, J. Power Source, 126, (2004) 58-66

22. B. Rosch, H. Tu, A. O. Stormer, A. C. Muller and U. Stimming, Solid
State Ionics, 175, (2004) 113-117

23. C. Xia, M. Liu, Solid State Ionics, 144, (2001) 249-255

24. Y. Zhang, J. Gao, D. Peng, M. Guangyao, and X. Liu, Ceramics
International, 30, (2004) 1049–1053

25. D. Rotureau, J. P. Vircelle, C. Pijolat, N. Caillol and M. Pijolat, J. Europ. Ceram. Soc., 25, (2005) 2633-2636

26. D. Simwonis, H. Thulen, F. J. Dias, A. Naoumidis and D. Stover,
Journal of Materials Processing Technology, 92-93, (1999) 107-111

27. Y. B. Kim, S. G. Yoon and H. G. Kim, J. Electrochem. Soc., 139, (1992) 2559-2562

28. A. Nagata, H. Okayama, Vacuum, 66, (2002) 523–529

29. B. Su, K. L. Choy, Thin Solid Films, 359, (2000) 160-164

30. W. R. Grove, Philos. Mag., 14, (1839) 127-130

31. W. Nernst, Z. Elektrochem., 6, (1899) 41-43

32. E. Baur, H. Preis, Z. Elektrochem., 43, (1937) 727-732

33. 方冠榮,黃朝琪,陳德源,材料會訊,8,(2001) 41-50

34. J. Palsson, A. Selimovic and L. Sjunnesson, J. Power Sources, 86,
(2000) 442-448

35. K. Kordesch, G. Simader, Fuel cells and their applications,
Weinheim (1996)

36. D. Y. Wang, A. S. Nowick, J. Electrochem. Soc., 126, (1979)
1155-1165

37. B. C. H. Steele, Solid State Ionics, 86-88, (1996) 1223-1234

38. J. Fleig, Annu. Rev. Mater. Res., 33, (2003) 361-382

39. D. Stover, H. P. Buchkremer and S. Uhlenbruck, Ceramics
International, 30, (2004) 1107-1113

40. A. B. Stambouli, E. Traversa, Renewable and Sustainable Energy
Reviews, 6, (2002) 433-455

41. Y. Wang, T. Mori, J. G. Li and J. Drennan, J. Europ. Ceram. Soc.,
25, (2005) 949–956

42. V. Grover, A.K. Tyagi, Materials Research Bulletin, 39, (2004)
859–866

43. W. D. Kingery, H. K. Bowen and D. R. Uhlmann, Introduction to Ceramics, Wiley (1976)

44. O. T. Sorensen, Nonstoichiometric Oxides, Academic Press (1981)

45. H. L. Tuller, A. S. Nowick, J. Electrochem. Soc., 122, (1975) 255-259

46. G. Blandent, M. Court and Y. Lagarde, Thin Solid Films, 77, (1981)
81- 90

47. J. Dutta, P. Roubeau, T. Emei-aud, J. M. Laurent, A. Smith, F.
Leblanc and J. Pen-in, Thin Solid Films, 239, (1994) 150-155

48. D. W. Dees, T. D. Claar, T. E. Easler, D. C. Fee and F. C. Mrazek, J.
Electrochem. Soc., 134 (1987) 2141-2146

49. Y. M. Park, G. M. Choi, J. Electrochem. Soc., 146, (1999) 883-889

50. E. I. Tiffee, W. Wersing, M. Schiebi and H. Greiner, Ber.
Bunsen-Ges. Phys. Chem., 94 (1990) 978

51. H. Itoh, T. Yamamoto, M. Mori, T. Horita, N. Sakai, H. Yokokawa
and M. Dokiya, J. Electrochem. Soc., 144 (1997) 641-646

52. T. Iwata, J. Electrochem. Soc., 143 (1996) 1521-1524

53. T. Setoguchi, K. Okamoto, K. Eguchi and H. Arai, J. Electrochem. Soc., 139, (1992) 2875–2880

54. A. J. Appleby, F. R. Foulkes, Fuel Cell Handbook, Van Nostrand
Reinhold (1989)

55. A. J. Bard, L. R. Faulkner, Electrochemical Methods Fundamentals
and applications, Wiley (2001)

56. D. Y. Wang, A. S. Nowick, J. Electrochem. Soc., 126, (1979)
1166-1172

57. A. V. Virkar, J. Chen, C. W. Tanner and J. W. Kim, Solid State
Ionics, 131, (2000) 189-198

58. E. H. Pacheco, D. Singh, P. N. Hutton,N. Patel and M. D. Manna,
J. Power Sources, 138, (2004) 174-186

59. T. Kenjo, Y. Yamakoshi, Bull. Chem. Soc. Jpn., 65, (1992) 995-1001

60. C. S. Hsu, B. H. Hwang, J. Electrochem. Soc., 153, (2006) A1478-
A1483

61. 許慶雄,以超音波霧化製程製備之SnO2薄膜性質,國立中山大學材料科學與工程研究所碩士論文,2001。

62. Z. Xie, W. Zhu, B. Zhu and C. Xia, Electrochimica Acta, 51, (2006)
3052–3057

63. E. P. Murray, M. J. Sever and S. A. Barnett, Solid State Ionics, 148, (2002) 27-34

64. C. C. Chen, M. M. Nasrallah and H. U. Anderson, in Proc. of the 3rd
international Symposium on SOFC, Vol.93-4, The Electrochemical
Soc.(1993) 598-612

65. S. Zha, W. Rauch and M. Liu, Solid State Ionics, 166, (2004)
241-250

66. Y. Yin, W. Zhu, C. Xia and G. Meng, J. Power Sources, 132,
(2004) 36-41

67. Y. Yin, S. Li, C. Xia and G. Meng, Electrochimica Acta, 51, (2006)
2594-2598
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:校內校外均不公開 not available
開放時間 Available:
校內 Campus:永不公開 not available
校外 Off-campus:永不公開 not available

您的 IP(校外) 位址是 3.238.86.122
論文開放下載的時間是 校外不公開

Your IP address is 3.238.86.122
This thesis will be available to you on Indicate off-campus access is not available.

紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code