Responsive image
博碩士論文 etd-0629106-201410 詳細資訊
Title page for etd-0629106-201410
論文名稱
Title
中央鑽孔碳纖維/聚二醚酮複材積層板升溫疲勞之機械性質
Fatigue Response of Centrally Notched APC-2 Composite Laminates at Elevated Temperature
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
139
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2006-06-23
繳交日期
Date of Submission
2006-06-29
關鍵字
Keywords
動態疲勞、靜態拉伸、高溫、積層板、機械性質、鑽孔、複合材料、強度與壽命預估、半經驗-半理論
semi-empirical, strength and Life prediction., elevated temperature, fatigue, static, mechanical properties, APC-2, notch, laminate, composite material
統計
Statistics
本論文已被瀏覽 5712 次,被下載 14
The thesis/dissertation has been browsed 5712 times, has been downloaded 14 times.
中文摘要
本文主要探討中央鑽孔與無鑽孔APC-2複材積層板在各種升溫環境中有系統地進行靜態拉伸實驗與動態拉伸-拉伸實驗所獲得的機械性質。接著依照統計學分析與濕熱環境對於複材持久度/壽命的影響建立半經驗-半理論之經驗式。
將十六層APC-2預浸布裁切所需疊層之積層板並依最佳化隔膜修正成形法製造。在依序在試片中央鑽孔各種大小的直徑之圓孔後,進行各種升溫環境中的之實驗測試。從所有的參數設定下我們得到重要的結論如下。在相同溫度下十字疊積層板擁有極限強度、疲勞強度及縱向徑度值均高於類似均向疊。鑽孔影響積層板強度減弱,但使徑度值有不規則產生。當測試溫度上升積層板之強度與徑度明顯地降低。結合溫度與鑽孔之影響在各種升溫環境下,我們發現疲勞實驗中十字疊擁有抵抗鑽孔損傷的影響的能力較類似均向疊高。然而類似均向疊擁有原始材料強度之能力均高於十字疊積層板。
最後複迴歸分析顯示濕熱環境影響及循環負載會減低APC-2複材性能。經驗式可靠地預估保守值,可建議被採用於初步設計中。這是本文論文中主要的貢獻所在。對於設計與應用的目標此預估經驗式有效地處理實驗值已代替傳統曲線擬合方法。
Abstract
This thesis was concerned on the investigation of mechanical properties of centrally notched and unnotched AS-4/PEEK (APC-2) composite laminates due to static tensile and tension-tension (T-T) fatigue tests empirically and systematically. Then, statistical analyses were used to determine and quantify the significant thermomechanical variables that influence the durability/life of the composite laminates.
Typical laminates were made from sixteen prepregs of APC-2 and manufactured by a modified curing process. After drilling one hole with various diameters in the center of the samples respectively, the lay-ups were conducted on tension fracture and T-T fatigue test at different temperatures. From the parametric study we achieved the important results as follows. The cross-ply laminate possesses the higher ultimate strength, fatigue strength and longitudinal stiffness than those of the quasi-isotropic at the same temperature. Notch effect decays the laminate strength seriously, but changes the stiffness irregularly. As test temperature rising both strength and stiffness of lay-ups degrade significantly. Combining both effects of notch and temperature under severe environmental condition, it is found the cross-ply laminate possesses more resistance than that of the quasi-isotropic to cyclic loading. However, the quasi-isotropic laminate is more capable of sustaining the original strength than that of the cross-ply.
Finally, the multiple regression analysis results showed that the hygrothermal environmental effects and cyclic loading were decoupled for APC-2 composite system. A semi-empirical model, reliably set up after the said programs, predicts conservative values, and should be adequate for use in preliminary designs. That is the main contribution in this study. Also, for the purposes of design and application, the predicted models efficiently treat experimental data instead of conventional curve-fitting methods.
目次 Table of Contents
CONTENTS
ABSTRACT……………………………………..…………………………………I
List of Tables………………………………………………………………………V
List of Figures………………………………………….…………………………VI
Chapter 1. Introduction…………………………………….………………………1
1-1 Introduction………………………………………………………………...1
1-2 Review of Literature……………………………………………………….3
1-2-1 Notched Factors of Composites…………………………….………….3
1-2-2 The Effects of Temperature on Composites……………………………4
1-2-3 The Research Work at Composite Materials Fatigue and Fracture Laboratory on Mechanical Properties of APC-2 Composites…………………………………………………………….6
1-3 Objectives of Dissertation…………………………………………………8
CHAPTER 2. ARRANGEMENT FOR EXPERIMENT…………………………10
2-1 Materials…………………………………………………………………..11
2-1-1 AS-4 Fiber…………………………………………………………….11
2-1-2 PEEK Matrix…………………………………………………………12
2-2 Forming Method…………………………………………………………..13
2-3 Laminate Preparation……………………………………………………...13
2-4 Static Tensile Tests………………………………………………………...14
2-5 Tension-Tension Fatigue Tests…………………………………………….15
2-6 Experimental Programs……………………………………………………15
2-7 Experimental Procedure…………………………………………………...16
2-7-1 Function Descriptions………………………………………………...16
2-7-2 Set Up and Specimen Loading Procedures…………………………...18
CHAPTER 3. EXPERIMENTAL RESULTS…………………………………….28
3-1 Static Tests in Unnotched and Notched APC-2 Composite Laminates…………………………………………………………………28
3-2 Fatigue Tests in Unnotched APC-2 Composite Laminates………………...29
3-3 Fatigue Tests in Notched APC-2 Composite Laminates…………………...29
3-4 Statistical Analyses and Multiple Regression……………………………...30
3-4-1 The Analysis of Static Tests in Unnotched and Notched APC-2 Composite Laminates at Elevated Temperature…………………………..33
3-4-2 The Analysis of Fatigue Tests in Unnotched APC-2 Composite Laminates at Elevated Temperature………………………………………34
3-4-3 The Analysis of Fatigue Tests in Notched APC-2 Composite Laminates at Elevated temperature…………………………………………………...34
3-5 Failure Modes of APC-2 Composite Laminates…………………………...35
CHAPTER 4. DISCUSSION……………………………………………………..79
4-1 The Influence of Notched Factor at Elevated Temperature on APC-2 Composite Laminates During Static Testing………………………………...79
4-2 The Effects of Elevated Temperature on APC-2 Composite Laminates During Cyclic Loading Test…………………………………………………………84
4-3 The Influence of Notch and Temperature on APC-2 Composite Laminates During Thermo-Cyclic Loading……………………………………………..86
4-4 Generalization for Durability/Life to AS-4 Fiber/PEEK Matrix Composites…………………………………………………………………..90
4-5 Failure Modes of APC-2 Composite Laminates……………………………...95
CHAPTER 5 CONCLUSION and FUTURE WORK……………………………98
5.1 Conclusion…………………………………………………………………….98
5.2 Future Work…………………………………………………………………...99
REFERENCES…………………………………………………………………..101
APPENDIX 1……………………………………………………………………109
APPENDIX 2……………………………………………………………………110
VITA……………………………………………………………………………..115

List of Tables
Table 2-1 Property data of APC-2 composite…………………………………….19
Table 3-1 Mechanical properties of various lay-ups at room moisture and temperature…………………………………………………………….37
Table 3-2 Mechanical properties of two lay-up specimens W/WO notch at elevated temperature…………………………………………………………….38
Table 3-3 Failure mode and mechanism of two lay-ups W/WO notch at elevated temperature as depicted in Figure 3-1 schematically………………………………………………………...39
Table 3-4 The ultimate strength and longitudinal stiffness in variously notched cross-ply laminates at different temperature…………………………..40
Table 3-5 The ultimate strength and longitudinal stiffness in variously notched quasi-isotropic laminates at different temperature…………………….42
Table 3-6 The data of load vs. cycles at various temperatures in cross-ply and quasi-isotropic laminates………………………………………………44
Table 3-7 Dynamic stiffness of unnotched cross-ply laminate at elevated temperature…………………………………………………………….45
Table 3-8 Dynamic stiffness of unnotched quasi-isotropic laminate at elevated temperature…………………………………………………………….45
Table 3-9 Mechanical properties of unnotched cross-ply and quasi-isotropic specimens at elevated temperature……………………………………46
Table 3-10 Mechanical properties of notched cross-ply and quasi-isotropic specimens at elevated temperature (d = 4 mm) ………………………47
Table 3-11 The data of load (stress) vs. cycles at various temperatures in notched cross-ply and quasi-isotropic laminates………………………………48
Table 3-12 Curve fitting plot with second-order polynomial by drilling a central hole of 4mmψ in cross-ply and quasi-isotropic specimens…………50
Table 3-13 Semi-empirical models of APC-2 composite laminates………………51

List of Figures
Figure 2-1 Curing process for APC-2 laminates…………………………………..18
Figure 2-2 (a) The prepregs lying on underneath template of hot press……….20
Figure 2-2 (b) The Polyimide film set up between upper template and the prepregs in hot press………………………………………………….21
Figure 2-2 (c) The situation of performing curing process in hot press………..21
Figure 2-3 (a) The geometry of the APC-2 composite laminate………………..22
Figure 2-3 (b) The dimensions of the APC-2 composite laminate……………...22
Figure 2-4 The diamond-blade cutting machine with cooling water way……...23
Figure 2-5 The high-speed-counterclockwise drilling machine with a tungsten head……………………………………………………………………23
Figure 2-6 The geometry and dimensions of a specimen…………………………24
Figure 2-7 The MTS-810 servohydraulic computer-controlled universal material testing machine……………………………………………………….25
Figure 2-8 MTS-651 hot chamber………………………………………………..26
Figure 2-9 The 25.4 MTS-634.11F-25 extensometer for elevated temperature……………………………………………………………27
Figure 3-1 Schematic failure mode and mechanism in two lay-ups with notch…………………………………………………………………...52
Figure 3-2 The ultimate strength in variously notched cross-ply laminates at elevated temperature…………………………………………………...53
Figure 3-3 The ultimate strength in variously notched quasi-isotropic laminates at elevated temperature…………………………………………………...53
Figure 3-4 (a) The longitudinal stiffness in variously notched cross-ply laminates at elevated temperature…………………………………………………...54
Figure 3-4 (b) The longitudinal stiffness in variously notched quasi-isotropic laminates at elevated temperature……………………………………………….……………54
Figure 3-5 (a) The change of normalized strength in notched cross-ply laminates at elevated temperature…………………………………………………...55
Figure 3-5 (b) The change of normalized strength in notched quasi-isotropic laminates at elevated temperature……………………………………………….……………55
Figure 3-6 (a) The change of normalized stiffness in notched cross-ply laminates at elevated temperature…………………………………………………..56
Figure 3-6 (b) The change of normalized stiffness in notched quasi-isotropic laminates at elevated temperature……………………………………………………………56
Figure 3-7 (a) The strain in variously notched CP laminates at elevated temperature…………………………………………………………….57
Figure 3-7 (b) The strain in variously notched QI laminates at elevated temperature……………………………………………………………57
Figure 3-8 (a) Experimental data of strain with variously notched hole at elevated temperature in comparison with the predictive model of cross-ply laminates………………………………………………………………58
Figure 3-8 (b) Experimental data of strain with variously notched hole at elevated temperature in comparison with the predictive model of quasi-isotropic laminates………………………………………………………………58
Figure 3-9 (a) The S-N curves at various temperatures in cross-ply laminates………………………………………………………………59
Figure 3-9 (b) The S-N curves at various temperatures in quasi-isotropic laminates………………………………………………………………59
Figure 3-10 The fatigue strength vs. temperature of cross-ply and quasi-isotropic laminates………………………………………………………………60
Figure 3-11 The dynamic stiffness’s ratio vs. temperature of cross-ply and quasi-isotropic laminates………………………………………………60
Figure 3-12 (a) The dynamic stiffness’s ratio vs. cycles of cross-ply laminates………………………………………………………………61
Figure 3-12 (b) The dynamic stiffness’s ratio vs. cycles of quasi-isotropic laminates………………………………………………………………61
Figure 3-13 (a) The ultimate tensile strength versus temperature of unnotched and notched cross-ply specimens……………………………………….…62
Figure 3-13 (b) The ultimate tensile strength versus temperature of unnotched and notched quasi-isotropic specimens……………………………………62
Figure 3-14 (a) The longitudinal stiffness versus temperature of unnotched and notched cross-ply specimens……………………………………………………………..63
Figure 3-14 (b) The longitudinal stiffness versus temperature of unnotched and notched quasi-isotropic specimens…………………………………………..…………………63
Figure 3-15 (a) The S-N curves of notched cross-ply specimens at different temperatures………………………………………………………...…64
Figure 3-15 (b) The S-N curves of unnotched cross-ply specimens at different temperatures…………………………………………………………...64
Figure 3-16 (a) The normalized stress vs. cycles curves of notched cross-ply specimens at different temperature……………………………………65
Figure 3-16 (b) The normalized stress vs. cycles curves of unnotched cross-ply specimens at different temperatures…………………………………..65
Figure 3-17 (a) The S-N curves of notched quasi-isotropic specimens at different temperatures……………………………………………………………66
Figure 3-17 (b) The S-N curves of unnotched quasi-isotropic specimens at different temperatures……………………………………………………………66
Figure 3-18 (a) The normalized stress vs. cycles curves of notched quasi-isotropic specimens at different temperatures…………………………………...67
Figure 3-18 (b) The normalized stress vs. cycles curves of unnotched quasi-isotropic specimens at different temperatures…………………………………..67
Figure 3-19 (a) Data points of normalized stress vs. d/W at elevated temperature in comparison with the modified predictive model of cross-ply laminates………………………………………………………………68
Figure 3-19 (b) Data points of normalized stress vs. d/W at elevated temperature in comparison with the modified predictive model of quasi-isotropic laminates………………………………………………………………68
Figure 3-20 (a) The generalized predictive models of cross-ply laminates at different temperatures……………………………………………………………69
Figure 3-20 (b) The generalized predictive models of quasi-isotropic laminates at different temperatures…………………………………………………69
Figure 3-21 (a) The normalized stress vs. d/W curves at different temperatures in notched cross-ply specimens by the generalized predictive model………………………………………………………………….70
Figure 3-21 (b) The normalized stress vs. d/W curves at different temperatures in notched quasi-isotropic specimens by the generalized predictive model………………………………………………………………….70
Figure 3-22 (a) The normalized stress vs. cycles curves at different temperatures in notched cross-ply specimens by the generalized predictive model………………………………………………………………….71
Figure 3-22 (b) The normalized stress vs. cycles curves at different temperatures in notched quasi-isotropic specimens by the generalized predictive model…………………………………………………………………..71
Figure 3-23 (a) The T-N curves at various temperatures in cross-ply laminates…...72
Figure 3-23 (b) The T-N curves at various temperatures in quasi-isotropic laminates………………………………………………………………72
Figure 3-24 (a). The T-N curves of notched cross-ply specimens at different temperatures…………………………………………………………..73
Figure 3-24 (b). The T-N curves of unnotched cross-ply specimens at different temperatures…………………………………………………………...73
Figure 3-25 Specimen diagram of fibers direction…………………………………74
Figure 3-26 Fracture photograph of various unidirectional nanocomposite specimens, such as [0]16, [30]16, [45]16, [60]16, and [90]16, from top to bottom………………………………………………………………….74
Figure 3-27 (a) Fracture photograph of cross-ply nanocomposite specimens at elevated temperature, such as 50, 75, 100, 125, and 150℃, from left to right……………………………………………………………………75
Figure 3-27 (b) Typical picture of notched CP specimens under impending failure at different temperatures…………………………………………………75
Figure 3-28 (a) Fracture photograph of quasi-isotropic nanocomposite specimens at elevated temperature, such as 50, 75, 100, 125, and 150℃, from left to right……………………………………………………………………76
Figure 3-28 (b) Typical picture of notched QI specimens under impending failure at different temperatures…………………………………………………76
Figure 3-29 (a) Typical picture of unnotched AP specimens under impending failure………………………………………………………………….77
Figure 3-29 (b) Typical picture of notched AP specimens under impending failure………………………………………………………………….77
Figure 3-30 (a) SEM photograph of cross-ply at normal temperature for 0-degree ply……………………………………………………………………..78
Figure 3-30 (b) SEM photograph of cross-ply at normal temperature for 90-degree ply……………………………………………………………………..78
Figure 3-31 (a) SEM photograph of cross-ply above Tg for 0-degree ply…………79
Figure 3-31 (b) SEM photograph of cross-ply above Tg for 90-degree ply……….79
Figure 3-32 (a) SEM photograph of quasi-isotropic at normal temperature for 0-degree ply…………………………………………………………...80
Figure 3-32 (b) SEM photograph of quasi-isotropic at normal temperature for 45-degree ply………………………………………………………….80
Figure 3-32 (c) SEM photograph of quasi-isotropic at normal temperature for 90-degree ply…………………………………………………………..81
Figure 3-33 (a) SEM photograph of quasi-isotropic above Tg for 0-degree ply…...81
Figure 3-33 (b) SEM photograph of quasi-isotropic above Tg for 45-degree ply….82
Figure 3-33 (c) SEM photograph of quasi-isotropic above Tg for 90-degree ply….82
參考文獻 References
REFERENCES
1. Rybicki, E. F. and Schmueser, D. W. (1976). Three Dimensional Stress Analysis of a Laminated Plate Containing an Elliptical Cavity, AFML-TR-76-32, Battelle, Columbus Laboratories, Columbus, Ohio.
2. Tang, S. (1977). Interlaminar Stresses Around Circular Cutouts in Composite Plates under Tension, American Institute of Aeronautics and Astronautics Journal, 15(11): 1631-1637.
3. Vaidya, R. S. and Sun, C. T. (1997). Fracture Criterion for Notched Thin Composite Laminates, American Institute of Aeronautics and Astronautics Journal, 35(2): 311-316.
4. Vaidya, R. S., Klug, J. C. and Sun, C. T. (1998). Effect of Ply Thickness on Fracture of Notched Composite Laminates, American Institute of Aeronautics and Astronautics, 36(1): 81-88.
5. Belmonte, H. M. S., Manga, C. I. C., Ogin, S. L., Smith, P. A. and Lewin, R. (2001). Characterisation and modelling of the notched tensile fracture of woven quasi-isotropic GFRP laminates, Composites Science and Technology, 61(4): 585-597.
6. Touchard-Lagattu, F. and Lafarie-Frenot, M. C. (1996). Damage and Inelastic Deformation Mechanisms in Notched Thermosetting and Thermoplastic Laminates, Composites Science and Technology, 56(5): 557-568.
7. Persson, E., Eriksson, I. and Zackrisson, L. (1997). Effects of Hole Machining Defects on Strength and Fatigue Life of Composite Laminates, COMPOSITES: Part A-Applied Science and Manufacturing, 28(2): 141-152.
8. Whitworth, H. A., Llorente, S. G. and Croman, R. B. (1997). Analysis of Fatigue Performance of Notched and Unnotched Graphite Thermoplastic Composite Laminates, Journal of Thermoplastic Composite Materials, 10(5): 435-452.
9. Ferreira, J. A. M., Costa, J. D. M. and Richardson, M. O. W. (1997). Effect of Notch and Test Conditions on the Fatigue of a Glass-Fiber-Reinforced Polypropylene Composite, Composites Science and Technology, 57(9-19): 1243-1248.
10. Bathias, C. (1996). Notch Effect on Fatigue of High Performance Composite Materials Mechanisms and Prediction, Key Engineering Materials, 120-121(1): 389-404.
11. Lin, H. J. and Tang, C. S. (1994). Fatigue Strength of Woven Fabric Composites with Drilled and Moulded-in Holes. Composites Science and Technology, 52(4): 571-576.
12. Takemura, K. and Fujii, T. (1994). Fracture Mechanics Evaluation of Progressive Fatigue Damage in a Circular-Hole-Notched GRP Composite under Combined Tension/Torsion Loading. Composite Science and Technology, 52(4): 527-534.
13. Chiou, P. and Bradley, L. (1995). Effects of Seawater Absorption on Fatigue Crack Development in Carbon/Epoxy EDT Specimens. COMPOSITES, 26(12): 869-876.
14. Amara, Kh., Tounsi, A., Megueni, A. and Adda-Bedia, E. A. (2006). Effect of Transverse Cracks on The Mechanical Properties of Angle-ply Composites Laminates. Theoretical and Applied Fracture Mechanics, 45: 72-78.
15. Moffatt, J. E., Plumbridge, W. J. and Hermann, R. (1997). High Temperature Crack Annealing Effects on Fracture Toughness of Alumina and Alumina-SiC Composites. British Ceramic Transactions, 96: 23-29.
16. Rao, K. T., Venkateswara, W. T. and Ritchie, R. O. (1998). High-temperature Fracture and Fatigue Resistance of a Ductile β-TiNb Reinforced γ-TiAl Intermetallic Composite. Acta Materialia, 46: 4167-4180.
17. Xia, K. and Langdon, T. G. (1996). Fracture Behavior at Elevated Temperatures of Alumina Matrix Composites Reinforced with Silicon Carbide Whiskers. Journal of Materials Science, 31: 5487-5492.
18. Peters, P.W.M., Daniels, B., Clemens, F. and Vogel, W.D. (2000). Mechanical Characterisation of Mullite-based Ceramic Matrix Composites at Test Temperatures up to 1200°C. Journal of the European Ceramic Society, 20(5): 531-535.
19. Zhu, S., Mizuno, M., Nagano, Y., Cao, J., Kagawa, Y. and Kaya, H. (1997). Creep and Fatigue Behavior of SiC Fiber Reinforced SiC Composite at High Temperatures. Materials Science and Engineering: A, 225(1-2): 69-77.
20. Yao, F., Ando, K., Chu, M. C. and Sato, S. (2000). Crack-healing Behavior, High Temperature and Fatigue Strength of SiC-reinforced Silicon Nitride Composite. Journal of Materials Science Letters, 19(12): 1081-1083.
21. Ando, K., Houjyou, K., Chu, M. C., Takahashi, K., Yao, F. and Sato, S. (2002). Crack-healing Behavior Under Stress and Fatigue Strength at Elevated Temperature of Crack-healed Si3N4/SiC Composite Ceramics. Key Engineering Materials, 206: 819-822.
22. Badini, C., Fino, P., Musso, M. and Dinardo, P. (2000). Thermal Fatigue Behaviour of a 2014/Al2O3-SiO2 (Saffil® fibers) Composite Processed by Squeeze Casting. Materials Chemistry and Physics, 64(3): 247-255.
23. Tanaka, Y., Kagawa, Y., Liu, Y. F. and Masuda, C. (2001). Interface Damage Mechanism during High Temperature Fatigue Test in SiC Fiber-reinforced Ti Alloy Matrix Composite. Materials Science and Engineering, A 314(1-2): 110-117.
24. Steel, S. G., Zawada, L. P. and Mall, S. (2001). Fatigue Behavior of a Nexel720/Alumina (N720/A) Composite at Room and Elevated Temperature. Ceramic Engineering and Science Proceedings, 22(3): 695-702.
25. McNulty, J. C., He, M. Y. and Zok, F. M. (2001). Notch Sensitivity of Fatigue Life in a Sylramic TM/SiC Composite at Elevated Temperature. Composites Science and Technology, 61(9): 1331-1338.
26. Legrand, N., Remy, L., Molliex, L. and Dambrine, B. (2002). Damage Mechanisms and Life Prediction in High Temperature Fatigue of a Unidirectional SiC/Ti Composite. International Journal of Fatigue, 24(2-4): 369-379.
27. Brillhart, M. and Botsis, J. (1992). Fatigue Fracture Behavior of PEEK: 2. Effects of Thickness and Temperature. Polymer, 33: 5225-5232.
28. Sun, C. T. and Yoon, K. J. (1991). Characterization of Elastic-plastic Behavior of AS-4/PEEK Thermoplastic Composite for Temperature Variation, Journal of Composite Materials, 25: 1297-1313.
29. Mahieux, C., Russell, B. E. and Reifsnider, K. L. (1998). Stress Rupture of Unidirectional High Performance Thermoplastic Composites in End-loaded Bending at Elevated Temperatures, Part Ι: Experimental Characterization of The Failure Mode. Journal of Composite Materials, 32: 1311-1321.
30. Kawai, M., Morishita, M., Kuz, K. and Sakurai, T. (1996). Effects of Matrix Ductility and Progressive Damage on Fatigue Strengths of Unnotched and Notched Carbon Fiber Plain Woven Roving Fabric Laminates. COMPOSITES, 30A: 493-502.
31. Jones, D. P., Leach, D. C. and Moore, D. R. (1985). Mechanical Properties of Poly (Ether-Ether-Ketone) for Engineering Applications. Polymer, 26: 1385-1393.
32. Gao, S. L. and Kim, J. K. (2001). Cooling Rate Influences in Carbon Fiber/PEEK Composites. PartⅡ: Interlaminar Fracture Toughness, COMPOSITES: Part A-Applied Science and Manufacturing, 32(6): 763-774.
33. Dimitrienko, Yu. I. (1997). Thermomechanical Behavior of Composite Materials and Structures under High Temperatures: 2. Structures, COMPOSITES: Part A-Applied Science and Manufacturing, 28(5): 463-471.
34. Sjogren, A. and Asp, L. E. (2002). Effects of Temperature on Delamination Growth in a Carbon/Epoxy Composite under Fatigue Loading, International Journal of Fatigue, 24(2-4): 179-184.
35. Shankar Mall. (2005). Effects of Moisture on Fatigue Behavior of SiC/SiC Composite at Elevated Temperature, Material Science and Engineering A, 412: 165-170.
36. Jen, M. H. R., Hsu, J. M., Kau, Y. S. and Kao, P. W. (1992). The Interlaminar Stresses at Straight Edges in Composite Laminates, Journal of Reinforced Plastics and Composites, 11(6): 584-599.
37. Jen, M. H. R., Kau, Y. S. and Hsu, J. M. (1993). Interlaminar Stresses in a Centrally Notched Cross-ply Composite Laminate, International Journal of Solids and Structures, 30(21): 2911-2928.
38. Jen, M. H. R., Hsu, J. M. and Lee, C. H. (1990). Fatigue Damage in Centrally Notched GR/EP Laminates, Journal of Experimental Mechanics, 30(4): 360-366.
39. Jen, M. H. R., Kau, Y. S. and Hsu, J. M. (1993). Initiation and Propagation of Delamination in a Centrally Notched Composite Laminate, Journal of Composite Materials, 27(3): 272-302.
40. Jen. M. H. R., Kau, Y. S. and Wu, I. C. (1994). Fatigue Damage in A Centrally Notched Composite Laminate due to Two-step Spectrum Loading, International Journal of Fatigue, 16(3): 193-201.
41. Lee, C. H., and Jen, M. H. R. (1998). Strength and Life in Thermoplastic Composite Laminates under Static and Fatigue Loadings, Part 1:Experiment, International Journal of Fatigue, 20(9): 605-615.
42. Lee, C. H., Jen, M. H. R. (1998). Strength and Life in Thermoplastic Composite Laminates under Static and Fatigue Loadings, Part II: Formulation, International Journal of Fatigue, 20(9): 617-629.
43. Lee, C. H. and Jen, M. H. R. (2000). Fatigue Response and Modeling of Variable Stress Amplitude and Frequency in AS-4/PEEK Composite Laminates, Part I: Experiments, Journal of Composite Materials, 34(11): 906-929.
44. Lee, C. H., and Jen, M. H. R. (2000). Fatigue Response and Modeling of Variable Stress Amplitude and Frequency in AS-4/PEEK Composite Laminates, Part 2: Analysis and Formulation, Journal of Composite Materials, 34(11): 930-953.
45. Gibson, R. F. (1994). Analysis of Lamina Hygrothermal Behavior, Principles of Composite Material Mechanics, McGraw-Hill Inc., N. Y., 139.
46. Chamis, C. C. and Sinclair, J. H. (1982). Durability/Life of Fiber Composites in Hygrothermo-mechanical Environments, Composite Materials: Testing and Design (Sixth Conference in Phoenix, Arizona.), ASTM STP 787, I. M. Daniel, Ed., American Society for Testing and Materials, 498-512.
47. Chamis, C. C. (1987). Simplified Composite Micromechanics Equation for Mechanical, Thermal and Moisture-related Properties. In Weeton J W et al. (eds.), Engineers' Guide to Composite Materials, 3-8-3-24, ASM International, Materials Park, OH.
48. Karbhari, V. M. (2002). Response of Fiber Reinforced Polymer Confined Concrete Exposed of Freeze and Freeze-Thaw Regimes, Journal of Composites for Construction, 1: 35-40.
49. Montgomery, D. C., Peck, E.A. and Vining, G.G. (2001), Introduction to Linear Regression Analysis (3rd edition), ISBN: 0471315656.
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:校內一年後公開,校外永不公開 campus withheld
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus:永不公開 not available

您的 IP(校外) 位址是 18.221.19.26
論文開放下載的時間是 校外不公開

Your IP address is 18.221.19.26
This thesis will be available to you on Indicate off-campus access is not available.

紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code