Responsive image
博碩士論文 etd-0629106-212817 詳細資訊
Title page for etd-0629106-212817
論文名稱
Title
三角無間隙微陣列透鏡設計與製作
Design and Fabrication of Gapless Triangular Micro-lens Arrays
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
78
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2006-06-28
繳交日期
Date of Submission
2006-06-29
關鍵字
Keywords
無間隙、微電鍍、熱壓、微陣列透鏡
embossing, micro-electroplating, micro-lens arrays, gapless
統計
Statistics
本論文已被瀏覽 5665 次,被下載 0
The thesis/dissertation has been browsed 5665 times, has been downloaded 0 times.
中文摘要
本研究提出一個創新的製程設計並且製作三角無間隙的微陣列透鏡。過程主要包括:透過tracepro進行光學模擬,黃光顯影技術,回火製程技術,微電鍍技術,熱壓成形製程。在黃光製程形成三角微陣列光阻柱後,透過光阻回流製程將三角微陣列光阻柱回流形成三角微陣列透鏡的形狀。在完成回流的三角微陣列透鏡上,沉積鎳薄膜並均勻地電鍍鎳於三角微陣列透鏡結構上。以電流密度1ASD(A/dm2) 調控電鍍鎳的生成速率。在電鍍的過程完成之後可製成三角無間隙的微陣列透鏡的母模具,再以鈍化技術處理母模具表面,並再進行一次鎳電鍍製程,可製成將三角無間隙的微陣列透鏡的公模具。以公模具為主模具進行熱壓製程,將三角無間隙微陣列透鏡的結構複印到聚合材料PMMA膜片與PET膜片上。
而模具的剛度與硬度在三角無間隙微陣列透鏡複製量產中,演重要的角色。此外三角無間隙微陣列透鏡具100%的填充係數而且模擬結果具66.67%的光學耦合效率,以改善背光模組亮度。本研究製作出兩個不同深寬比的模具,其深寬比各為0.109與0.133。背光模組光學量測系統量測出深寬比為0.109的三角無間隙微陣列透鏡光學膜片,可提升15.55%的輝度值,而深寬比為0.133的三角無間隙微陣列透鏡光學膜片,可提升22.22%的輝度值。
Abstract
This study presents a new process to fabricate gapless triangular micro-lens array (GTMA). The process includes optical simulation with tracepro, UV lithography, photoresist reflow process, Ni electroplating and hot embossing technique. After photoresist triangular column array is defined using UV lithography, reflow process is applied to melt photoresist triangular column array into the shape of triangular micro-lens array. With this reflowed triangular micro-lens array, Ni is deposited and covered uniformly on the triangular micro-lens array using electroplating. The growth rate of Ni is controlled at electroplating current density of 1 Ampere Square Decimeter (ASD; A/dm2). After this electroplating process is finished, a mold of GTMA is obtained, which is served as primary mold. Subsequently, with passivation technique applied on this mold’s surface, electroplating process is applied again to obtain a secondary mold. Next, this secondary mold is served as master for the subsequent hot embossing process to replicate the GTMA pattern onto polymeric material PMMA and PET sheet.
The mold with stiffness and hardness plays an important role in GTMA hot embossing process. In addition, this GTMA used as optical film can offer a 100 % fill factor and a simulation of optical coupling efficiency of 66.7% to improve luminance of backlight module (BLM). In addition, this study presents the fabricated molds of GTMA with different aspect-ratio about 0.109 and 0.133. The optical measurement of BLM shows that this optical film of GTMA pattern with aspect-ratio about 0.109 can increase 15.1% of luminance and with aspect-ratio about 0.133 can increase 22.1% of luminance.
目次 Table of Contents
誌謝............................................................................................................I
目錄...........................................................................................................II
圖目錄......................................................................................................IV
表目錄......................................................................................................VI
摘要........................................................................................................VII
Abstract..................................................................................................VIII

第一章 緒論.............................................................................................1
1-1 研究背景與目的.........................................................................1
1-2 文獻回顧....................................................................................3
1-3 本文架構....................................................................................5
第二章 無間隙微陣列透鏡設計與分析.................................................6
2-0 前言............................................................................................6
2-1 微透鏡光學原理........................................................................6
2-2 折射式微透鏡...........................................................................10
2-2-1 稜鏡片.................................................................................10
2-2-2 微陣列透鏡.........................................................................11
2-3微陣列透鏡光學模擬分析.......................................................12
第三章 無間隙微陣列透鏡應用於背光模組........................................17
3-0 前言..........................................................................................17
3-1 背光模組簡介..........................................................................17
3-2 背光模組之光學模擬..............................................................20
第四章 無間隙微陣列透鏡製程設計與製作......................................26
4-0 前言..........................................................................................26
4-1 製程原理介紹..........................................................................26
4-1-2金屬沉積製程技術原理......................................................29
4-1-3鎳微電鑄製程技術原理......................................................31
4-2製程設計...................................................................................38
4-2-1單層光阻結構微透鏡..........................................................38
4-2-2雙層光阻結構微透鏡..........................................................41
4-3 無間隙微陣列透鏡製作..........................................................44
4-3-1微陣列結構黃光製程..........................................................44
4-3-2微陣列光阻回流製程..........................................................46
4-3-3導電薄膜濺鍍製程..............................................................47
4-3-4微陣列透鏡模仁電鑄製程..................................................48
4-3-5光學膜片熱壓製程..............................................................53
第五章 結果與討論..............................................................................55
5-1黃光製程量測結果與討論.......................................................55
5-2電鑄模具製程結果與討論.......................................................56
5-3微陣列透鏡光學量測結果與討論...........................................59
第六章 總結與未來展望.....................................................................62
6-1 總結..........................................................................................62
6-2 未來展望..................................................................................63
參考文獻..................................................................................................64





















圖目錄
圖 2-1 光線折射..................................................................................6
圖 2-2 臨界角......................................................................................7
圖 2-3 折射光路..................................................................................8
圖 2-4 轉移光路..................................................................................9
圖 2-5 稜鏡片應用於背光模組.........................................................10
圖 2-6 微陣列透鏡應用於背光模組.................................................11
圖 2-7 創新微陣列透鏡應用於背光模組.........................................11
圖 2-8 單位面積透鏡數.....................................................................12
圖 2-9 輸入功率60,000 W/m2的高斯雷射......................................13
圖 2-10 雷射穿透三角無間隙微陣列透鏡,輸出功40,000 W/m2...14
圖 2-11 雷射穿透矩形無間隙微陣列透鏡,輸出功27,500 W/m2 ...15
圖 2-12 雷射穿透矩形無間隙微陣列透鏡,輸出功20,000 W/m2 ...16
圖 3-1 側光式背光模組.....................................................................18
圖 3-2 無增亮膜之背光模組建模.....................................................20
圖 3-3 無增亮膜之背光模組光能分佈.............................................21
圖 3-4 稜鏡片微結構.........................................................................21
圖 3-5 增亮膜為稜鏡片之背光模組建模.........................................22
圖 3-6 稜鏡片(Pitch 50um)之背光模組光能分佈...........................23
圖 3-7 稜鏡片(Pitch 1mm)之背光模組光能分佈............................23
圖 3-8 增亮膜為三角無間隙微陣列透鏡之背光模組建模.............24
圖 3-9 三角無間隙微陣列透鏡之背光模組光能分佈.....................25
圖 4-1 真空蒸鍍機(左)與真空濺鍍機示意圖(右).................31
圖 4-2 單層光阻結構微陣列透鏡製程設計流程.............................40
圖 4-3 雙層光阻結構微陣列透鏡製程設計流程.............................43
圖 4-4 光罩設計.................................................................................44
圖 4-5 單層AZ4620顯影結構..........................................................45
圖 4-6 單層AZ9260顯影結構..........................................................45
圖 4-7 單層三角陣列回流結構.........................................................46
圖 4-8 雙層結構回流表面張力示意圖.............................................46
圖 4-9 雙層三角陣列回流結構.........................................................46
圖 4-10 單層三角陣列鎳沈積.............................................................47
圖 4-11 雙層三角陣列鎳沈積.............................................................47
圖 4-12 三角半球陣列鎳沈積成品....................................................47
圖 4-13 單層三角無間隙微陣列透鏡模具電鑄製程........................49
圖 4-14 雙層三角無間隙微陣列透鏡模具電鑄製程........................51
圖 4-15 三角無間隙微陣列透鏡公模具............................................52
圖 4-16 模具拋光表面........................................................................52
圖 4-17 無間隙微透鏡公模具結構....................................................52
圖 4-18 熱壓機原理............................................................................53
圖 4-19 熱壓參數控制........................................................................53
圖 4-20 塑膠材料PET光學膜片熱壓成...........................................54
圖 4-21 塑膠材料PMMA光學膜片熱壓成品..................................54
圖 5-1 單層光阻厚度量測................................................................55
圖 5-2 單層三角無間隙微陣列透鏡模具3D Profile......................56
圖 5-3 單層三角無間隙微陣列透鏡製程設計結構........................56
圖 5-4 單層三角無間隙微陣列透鏡模具2D Profile......................57
圖 5-5 雙層三角無間隙微陣列透鏡模具Profile............................58
圖 5-6 雷射經三角無間隙微陣列透鏡折射後光點分佈................59
圖 5-7 背光模組輝度量測系統........................................................61
















表目錄
表 3-1 背光模組光能分佈亮度比對...................................................25
表 4-1 胺基磺酸鎳電鍍液組成.........................................................34
表 4-2 鍍鎳缺陷產生原因與解決方法...............................................37
表 5-1 背光模組輝度量測結果........................................................60
參考文獻 References
[1]Z. D. Popovic, R. A. Sprague, and G. A. N.Connell, “Technique for the monolithic fabrication of microlens arrays,” Applied Optics, 27, pp.1281-1284, 1988.
[2]M. C. Hutley, “Optical techniques for the generation of microlens arrays,” Journal of Modern Optics, 37, pp.253-265, 1990.
[3]J. O. Choi, J. A. Morse, J. C. Corelli, J. P. Silverman and H. Bakhru, “Degradation of poly (methylmethacrylate) by deepultraviolet, x-ray, electron beam, and proton beam irradiations,” J. Vac. Sc. Technol. B, 6, pp.3633-3642, 1988.
[4]N. F. Borrelli, D. L. Morse, R. H. Bellman, and W. L. Morgon, “Photolytic technique for producing microlenses in photosensitive glass,” Applied Optics, 24, pp.2520-2525, 1985.
[5]C. P. Lin., H. Yang, and C. K. Chou., “Hexagonal microlens array modeling and fabrication using a thermal reflow process,” J. Micromech. Microeng, 13, pp. 775-781, 2003.
[6]H. Yang, C. K. Chou, M. K. Wei, and C. P. Lin, “High fill-factor microlens array mold insert fabrication using a thermal reflow process,” J. Micromech. Microeng, 14, pp.1197-1204, 2004.
[7]J. Gottert and J. Mohr J, “Characterization of micro-optical components fabricated by deep-etch x-ray lithography,” SPIE: Micro-Optics II, 1506, pp.170-178, 1991.
[8]W. R. Cox, T. Chen, and D. Hayes, “Micro-optics fabrication by ink-jet printing,” Optics & Photonics News, 12(6), pp.32-35, 2001.
[9]H. Yang, M. C. Chou, A. Yang, C. K. Mu, and R. F. Shyu, “Realization of fabricating microlens array in mass production,” Proc. of SPIE, 3739, pp.178-185, 1999.
[10]H. Yang, C. T. Pan, and M. C. Chou, “Ultra-fine machining tool/molds by LIGA technology,” J. Micromech. Microeng, 11, pp.94-99, 2001.
[11]M. T. Gale, M. Rossi, J. Pedersen, and H. Schutz, “Fabrication of continuous-relief micro-optical elements by direct laser writing in photoresists,” Optical Engineering, 22(11), pp.3556-3566, 1994.
[12]K. Zimmer, D. Hirsch, and F. Bigl, “Excimer laser machining for the fabrication of analogous microstructures,” Applied Surface Science, 96-98, pp.425-429, 1996.
[13]C. H. Tien, Y. E. Chien, Y. Chiu, and H. P. Shieh, “Microlens array fabricated by excimer laser micromachining with gray-tone photolithography,” The Japan Society of Applied Physics, 42, pp. 1280-1283, 2003.
[14]L. Kong, X. Yi, K. Lian, and S. Chen, “Design and optical performance research of multi-phase diffractive microlens arrays,” J. Micromech. Microeng, 14, pp.1135-1139, 2004.
[15]S. Chen, X. Yi, H. Ma, “A novel method of fabrication of microlens arrays,” Infrared Physics & Technology, 44, pp.133-135, 2003.
[16]C. C. Chen, M. H. Li, C. Y. Chang, J. K. Sheu, G. C. Chi, W. T. Cheng, J. H. Yeh, J. Y. Chang, “GaN di.ractive microlenses fabricated with gray-scale mask,” Optics Communications, 215, pp. 75-78, 2003.
[17]S. A. Takatsuki, T. Y. Nara, S. O. Kyoto, “Micro aspherical lens and fabrication method therefore and optical device,” US Patent 5148322, 1992.
[18]S. Chen, X. Yi and H. Ma, “A novel method of fabrication of microlens arrays,” Infrared Physics & Technology, 44, pp. 133-135, 2003.

[19]S. Chena, X. Yia, L. B. Kongb, M. Heb, and H. C. Wang, “Monolithic integration technique for microlens arrays with infrared focal plane arrays,” Infrared Physics & Technology, 43, pp. 109-112, 2002.
[20]C. S. Lee, and C. H. Han, “A novel refractive silicon microlens array using bulk micromachining technology,” Sensors and Actuators, A 88, pp. 87-90, 2001.
[21]C. Quan, S. H. Wang, C. J. Tay, I. Reading, and Z. P. Fang, “Integrated optical inspection on surface geometry and refractive index distribution of a microlens array,” Optics Communications, 225, pp. 223-231, 2003.
[22]Y. Fu, “Investigation of microlens mold fabricated by focused ion beam technology,” Microelectronic Engineering, 56, pp. 333-338, 2001.
[23]N. F. Borrelli, “Efficiency of microlens array for projection LCD,” 44th Electronic Components and Technology Conf, pp. 338-345, 1994.
[24]3M, “Brightness enhancement film,” US Patent 6760157, 2004.
[25]S. Ohkawa, “Surface light source device of side light type and light control element,” US Patent 6328453, 2001.
[26]耿繼業、何建娃 , “幾何光學,” 全華科技出版社,2001.
[27]Lambda Research, “LCD backlighting tutorial,” tracepro tutorials, 2002.
[28]金美敬,“次世代面板技術更替與佈局策略,” 工研院IEK, 2005.
[29]鮑友南、潘奕凱、姚柏宏、林建憲,“TV用液晶顯示器之背光模組技術,” 機械工業雜誌 245 期,pp. 158–169, 2003.
[30]莊達人, “VLSI 製造技術,” 高立圖書,2002.
[31]劉博文, “ULSI 製造技術,” 文京開發,2003.

[32]H. Yang, S. W. Kang, “Improvement of thickness uniformity in nickel electroforming for the LIGA process,” International Journal of Machine Tools & Manufacture, 40, pp. 1065-1072, 2000.
[33]N. V. Parthasaradhy, “Practical electroplating handbook,” Prentice Hall, 1988.
[34]C. H. Huang, “Hydrolysis of sulfamate ion in nickel sulfamate solution,” Plating and Surface Finishing, 81, pp.64-68, 1994.
[35]H. Y, C. K. Chao, C. P. Lin and S. C. Shen, “Micro-ball lens array modeling and fabrication using thermal reflow in two polymer layers,” J. Micromech. Microeng., 14, pp.277-282, 2004.
[36]C. H. Chien, C. T. Pan, C. C. Hesieh, C. M. Yang, K. L. Sher, “A study of the geometry of microball lens arrays using the novel batch-fabrication technique,” Sensors and Actuators, A 122, pp. 55-63, 2005.
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:校內校外均不公開 not available
開放時間 Available:
校內 Campus:永不公開 not available
校外 Off-campus:永不公開 not available

您的 IP(校外) 位址是 3.144.202.167
論文開放下載的時間是 校外不公開

Your IP address is 3.144.202.167
This thesis will be available to you on Indicate off-campus access is not available.

紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code